Academia.eduAcademia.edu

Some elementary problems on infinite products

In this 3-paged paper we solve 2 problems on infinite products using the fundamental identity of complex analysis.

PROBLEMS ON INFINITE PRODUCTS BESLIKAS ATHANASIOS Abstract. In this paper we will investigate some infinite products using the fundamental identity of complex analysis, z = |z| eiθ . We will present our formulas in the form of problems, in order to help the reader. Problem 1 Problem 0.1. Prove that: ∞ Y 1 + itan( (0.1) n=1 Proof. It is true that Hence we have: z |z| 1 ) n2 π sec( n12 π ) iπ =e6 = eiθ , where θ = Arg(z) = arctan  Im(z) Re(z)   ∞ ∞ ∞ ∞ Y Y X Y zn zn Im(zn ) iθ (0.2) = = exp i e ⇒ arctan |z | |z | Re(zn ) n n n=1 n=1 n=1 n=1 Assuming that: zn = 1 + itan we have: (0.3) (0.4) Hence:  1 n2 π   !   ∞ ∞ X Y 1 + itan n12 π 1 q arctan tan  = exp n2 π 1 + tan2 n12 π n=1 n=1  ∞ P∞ Y 1 + itan n12 π 1 n=1 n2 π q = e  1 + tan2 n12 π n=1 1  ! . 2 BESLIKAS ATHANASIOS ∞ Y 1 + itan( (0.5) 1 ) n2 π sec( n12 π ) n=1 iπ =e6  What we saw in this problem was a very fundamental proof to an easy problem. Let us investigate a more difficult problem using as a basis the previous problem. Problem 0.2. Prove the following inequality: (0.6) ∞ Y n=1   sec   1 p2n 1 + itan  1i   ≤ 1 p2n π2 , pn prime. 15 Proof. We assume the following product:    ! 1 ∞ ∞ 1 + itan X Y p2n 1     = exp i (0.7) p2 sec p12 n=1 n n=1 n from the previous solution. Then we have:    1i  ! 1 ∞ ∞ 1 + itan Y X p2n 1     = exp (0.8) p2 sec p12 n=1 n=1 n n Using the following inequality we have: (0.9) ∞ X 1 an ≤ (1 + an ) ≤ exp p2 n=1 n k=1 k=1 n X n Y ! ⇒ from equation (0.8) we have: (0.10) ∞ X 1 exp p2 n=1 n ! ≥ ∞  Y n=1 1 1+ 2 pn  which is a known product from Ramanujan[1] . Hence, we have that: PROBLEMS ON INFINITE PRODUCTS 3 (0.11)    1i    1i   1   ∞ ∞ ∞ sec p12 Y 1 + itan p2n Y Y 15 π2 1 n        ≤ . ≥ 1+ 2 = 2 ⇒ pn π 15 sec p12 1 + itan p12 n=1 n=1 n=1 n n  References 1. Wolfram Math World, mathworld.wolfram.com Department of Mathematics, Aristotle University of Thessaloniki, 541 24 Thessaloniki E-mail address: mpeslikas@math.auth.gr