SlideShare a Scribd company logo
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
00./ 0
#denatechcon
00./ 0
#denatechcon
#denatechcon
#denatechcon
// . /
#denatechcon
// . /
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
(@hamadakoichi)
Mobage
2010 6
Mobage2011 4
DeNA
DeNA2014 10
: ( )
TokyoWebmining
- 1500
- 2010 60
DeNA 8 AI AI
AI
#denatechcon
50 /
#denatechcon
#denatechcon , , , , , .
“ ”. 232 (7/20/2017).
0
3
#denatechcon
5 4 /0 /
5 4 /0 : 6 / .
#denatechcon
Full-body High-resolution Anime Generation with
Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida.
In ECCV Workshop 2018.
(ECCV: European Conference on Computer Vision)
#denatechcon
AGENDA
#denatechcon
AGENDA
#denatechcon
#denatechcon
1 3 5 7
2 4 6 8
#denatechcon
1 3 5 7
2 4 6 8
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
1 3 5 7
2 4 6 8
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
#denatechcon
Generative Adversarial Nets.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio.
arXiv:1406.2661. In NIPS 2014.
#denatechcon
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
Progressive Growing of GANs for Improved Quality, Stability, and Variation.
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
(1024X1024)
(256x256)
#denatechcon
.441 7 545 7 4 /
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
#denatechcon
/ 5. 44 5
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
+ Spectral Normalization on Generator
+ Self Attention
+ Two Time Scale Update Rule
(512x512)
+ Spectral Normalization on Discriminator
+ Projection Discriminator
SNGAN with Projection (Miyato+, ICLR’18)
SAGAN (Zhang+, 18)
BigGAN (Brock+, ICLR’19)
+ Large Batch Size (256→2048)
+ Large Channel (64→96)
+ Shared Embedding
+ Hierarchical Latent Space
+ Truncation Trick
+ Orthogonal Regularization
+ First Singular Value Clamp
+ Zero-centered Gradient Penalty
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2018.
#denatechcon
(512x512)
Generator
Typical Architecture
Res Block
Architecture for ImageNet at 512x512
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
0
0
0
0
0
0 0
0
0
0
0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
0
0
0
0
0
0 0
0
0
0
0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
Full-body anime generation at 1024x1024 with Progressive Structure-conditional GANs
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
// . 0/0
Adding action to full-body anime characters with Progressive Structure-conditional GANs
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
(NIPS’17) (NIPS’17)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
(NIPS’17) (NIPS’17)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
n e
n 4 3 33 36 4
n 0231 33 36 4
n c
b a
)3 (
0 06I J@ N LT A F
( D T
#denatechcon
n
n
n
#denatechcon
n
n
#denatechcon
n C
n 0 1 .
n 0:: /1:0 6 ..:. 21 )()
#denatechcon
n CEAD A
n ) 17:
n 7 2 -( ) 17: 0/ 1 7 0 7 . :0. 0 7 1 7 :
#denatechcon
AGENDA
#denatechcon
#denatechcon
: ( . ) / .
#denatechcon
•
•
•
•
: ( . ) / .
#denatechcon
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
•
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
•
•
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
•
•
#denatechcon
#denatechcon
) ) 3
#denatechcon
) ) 3
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
8 1 1
1
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation.
Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
#denatechcon
/30 480 6 2/81 4C
+ 60 2
• 8 ,
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation.
Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
https://youtu.be/MjViy6kyiqs
Research at NVIDIA: Transforming Standard Video Into Slow Motion with AI
#denatechcon
7
1
Video Frame Synthesis using Deep Voxel Flow.
Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
#denatechcon
N I 7 B7 =: B = P
77 = 7: :=D
• /0 (+ /0 ,
Video Frame Synthesis using Deep Voxel Flow.
Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
BB F=CBC 67 ?. / 3: 1 B
Video Frame Synthesis using Deep Voxel Flow
#denatechcon
D
F 6 + 23C
• 1 76 , P SV P J IOM S R
• ( ,24 c SV P J ,24 cP
/ ++ C
• 1 76 , P J SV P
• 4 8 4 0 L a
Super SloMo(Adobe)
Super SloMo
Deep Voxel Flow
Video Frame Synthesis using Deep Voxel Flow. Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation. Huaizu Jiang, Deqing Sun, Varun
Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
F
#denatechcon
2
#denatechcon
#denatechcon
F
8 0 O T PL
n S 4 )
n F 4 (
W4000301 32 ( 6 A 7
#denatechcon
F F F 0 -1 12 W
n
n S
L ***7* 7 A A
OT 0 -1 12
#denatechcon
#denatechcon
#denatechcon
#denatechcon
n
n
#denatechcon
n
n
n
#denatechcon
n
n
n
n F
#denatechcon
n
n
n
n F
#denatechcon
G
I0 I4
Optical Flow
I1, I2, I3
(Generated)
#denatechcon
G
I0 I4
D
Optical Flow
I1, I2, I3
(Generated)
Ground Truth
#denatechcon
G
I0 I4
D
Optical Flow
I1, I2, I3
(Generated)
Ground Truth
MSE
#denatechcon
G
I0 I4
D
Optical Flow
Ground Truth
I1, I2, I3
(Generated)
Ground Truth
Generated
MSE
MSE
#denatechcon
G
I0 I4
D
Optical Flow
Ground Truth
I1, I2, I3
(Generated)
Ground Truth
Generated
MSE
MSE
#denatechcon
2
#denatechcon
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Local Discriminator
“Real” or “Fake”
Local Patch
(16×16pix)
#denatechcon
Conv-BN-ReLU
Conv-BN-ReLU
Generated Image
Sequense
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
FC
Local Discriminator
Temporal Discriminator
“Real” or “Fake”
Local Patch
(16×16pix)
Image
Sequense
“Real” or “Fake”
#denatechcon
#denatechcon
Video
#denatechcon
image0 image1 image2 image3 image4Video
#denatechcon
⁃ step size = 4 7FPS -> 30FPS 001.png, 005.png, 009.png, 013.png, 017.png
⁃ step size = 1 30FPS -> 120FPS 001.png, 002.png, 003.png, 004.png, 005.png
#denatechcon
⁃ step size = 4 7FPS -> 30FPS 001.png, 005.png, 009.png, 013.png, 017.png
⁃ step size = 1 30FPS -> 120FPS 001.png, 002.png, 003.png, 004.png, 005.png
#denatechcon
#denatechcon
Frame
Frame
Deep Voxel FlowInput
// . /
Experimental Results: “Anime Frame Generation with Structure-consistent Prediction GANs”
#denatechcon
step size = 1 step size = 4 step size = 7 step size = 10
Input
SPGAN
(Ours)
Deep Voxel Flow
4
// . /
Experimental Results: “Anime Frame Generation with Structure-consistent Prediction GANs”
#denatechcon
Deep Voxel Flow Ours
1.average PSNR/SSIM on test dataset step size=4
PSNR SSIM
Deep Voxel Flow 23.32 0.9294
SPGAN(Ours) 24.27 0.9407
#denatechcon
AGENDA
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
00./ 0
#denatechcon
00./ 0
#denatechcon
// . /
#denatechcon
// . /
#denatechcon
#denatechcon * 10 2 1
#denatechcon
#denatechcon
L0*** * 2 D 1 A 7
1 D 1 7
#denatechcon
TZ ... ./ 0 KD SL KA N O
N KD SL K N W
(3 Frame) AI (x16 )
Input Frames Generated Frames
78 : : 102*0DeNA AI :
#denatechcon

More Related Content

What's hot (20)

SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?
Fumihiko Takahashi
 
パンでも分かるVariational Autoencoder
パンでも分かるVariational Autoencoderパンでも分かるVariational Autoencoder
パンでも分かるVariational Autoencoder
ぱんいち すみもと
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留する
Takahiro Kubo
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
Deep Learning JP
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
Takuji Tahara
 
多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識
佑 甲野
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
Tenki Lee
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )
cvpaper. challenge
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
Eiji Uchibe
 
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
Deep Learning JP
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?
Fumihiko Takahashi
 
パンでも分かるVariational Autoencoder
パンでも分かるVariational Autoencoderパンでも分かるVariational Autoencoder
パンでも分かるVariational Autoencoder
ぱんいち すみもと
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh
 
Transformer メタサーベイ
Transformer メタサーベイTransformer メタサーベイ
Transformer メタサーベイ
cvpaper. challenge
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留する
Takahiro Kubo
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII2021 [TS2] 深層強化学習 〜 強化学習の基礎から応用まで 〜
SSII
 
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing[DL輪読会]GLIDE: Guided Language to Image Diffusion  for Generation and Editing
[DL輪読会]GLIDE: Guided Language to Image Diffusion for Generation and Editing
Deep Learning JP
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
Takuji Tahara
 
多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識多様な強化学習の概念と課題認識
多様な強化学習の概念と課題認識
佑 甲野
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
Tenki Lee
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )
cvpaper. challenge
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習強化学習と逆強化学習を組み合わせた模倣学習
強化学習と逆強化学習を組み合わせた模倣学習
Eiji Uchibe
 
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
【DL輪読会】Hierarchical Text-Conditional Image Generation with CLIP Latents
Deep Learning JP
 

Similar to AIによるアニメ生成の挑戦 (11)

Anime Generation with AI
Anime Generation with AIAnime Generation with AI
Anime Generation with AI
Koichi Hamada
 
Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
Devoxx software eco design - @erichoresnyi @greenit
Devoxx   software eco design - @erichoresnyi @greenitDevoxx   software eco design - @erichoresnyi @greenit
Devoxx software eco design - @erichoresnyi @greenit
Community motwin
 
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
streamdata.io
 
20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs
虎の穴 開発室
 
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Koichi Hamada
 
The Rise of Machine-Learned Features
The Rise of Machine-Learned FeaturesThe Rise of Machine-Learned Features
The Rise of Machine-Learned Features
NUS-ISS
 
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
AugmentedWorldExpo
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
Mechanzo PPT
Mechanzo PPTMechanzo PPT
Mechanzo PPT
Thinnkware Noida
 
iPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced PackagingiPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced Packaging
Bill Cardoso
 
Anime Generation with AI
Anime Generation with AIAnime Generation with AI
Anime Generation with AI
Koichi Hamada
 
Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
Devoxx software eco design - @erichoresnyi @greenit
Devoxx   software eco design - @erichoresnyi @greenitDevoxx   software eco design - @erichoresnyi @greenit
Devoxx software eco design - @erichoresnyi @greenit
Community motwin
 
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
streamdata.io
 
20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs
虎の穴 開発室
 
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Koichi Hamada
 
The Rise of Machine-Learned Features
The Rise of Machine-Learned FeaturesThe Rise of Machine-Learned Features
The Rise of Machine-Learned Features
NUS-ISS
 
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
AugmentedWorldExpo
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
iPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced PackagingiPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced Packaging
Bill Cardoso
 

More from Koichi Hamada (20)

Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada
 
NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics  NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada
 
NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics  NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 

Recently uploaded (20)

Machine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.pptMachine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.ppt
SATHISHKUMARSD1
 
AI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdfAI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdf
Aleksandr Terlo
 
Failover System in Cloud Computing System
Failover System in Cloud Computing SystemFailover System in Cloud Computing System
Failover System in Cloud Computing System
Hitesh Mohapatra
 
direct current machine first part about machine.pdf
direct current machine first part about machine.pdfdirect current machine first part about machine.pdf
direct current machine first part about machine.pdf
sahilshah890338
 
Helium Boosting & Decanting With Hydro Test Machine
Helium Boosting & Decanting With Hydro Test MachineHelium Boosting & Decanting With Hydro Test Machine
Helium Boosting & Decanting With Hydro Test Machine
Paskals Fluid Systems Pvt. Ltd.
 
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
 
Von karman Equation full derivation .pdf
Von karman Equation full derivation  .pdfVon karman Equation full derivation  .pdf
Von karman Equation full derivation .pdf
Er. Gurmeet Singh
 
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptxRenewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Rofino Licuco
 
Dilatometer Test in Geotechnical engineering an over view .pptx
Dilatometer Test in Geotechnical engineering an over view .pptxDilatometer Test in Geotechnical engineering an over view .pptx
Dilatometer Test in Geotechnical engineering an over view .pptx
RaghuramChallaC011
 
Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5
sureshkumara29
 
AI ppt on water jug problem by shivam sharma
AI ppt on water jug problem by shivam sharmaAI ppt on water jug problem by shivam sharma
AI ppt on water jug problem by shivam sharma
ShivamSharma588604
 
Design of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solvedDesign of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solved
Er. Gurmeet Singh
 
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
samueljackson3773
 
ESIT135 Problem Solving Using Python Notes of Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-3ESIT135 Problem Solving Using Python Notes of Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-3
prasadmutkule1
 
Scientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptxScientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptx
aravym456
 
Cloud Cost Optimization for GCP, AWS, Azure
Cloud Cost Optimization for GCP, AWS, AzureCloud Cost Optimization for GCP, AWS, Azure
Cloud Cost Optimization for GCP, AWS, Azure
vinothsk19
 
AIR FILTER system in internal combustion engine system.ppt
AIR FILTER system in internal combustion engine system.pptAIR FILTER system in internal combustion engine system.ppt
AIR FILTER system in internal combustion engine system.ppt
thisisparthipan1
 
Turbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdfTurbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdf
Totok Sulistiyanto
 
Artificial intelligence based solar vehicle.pptx
Artificial intelligence based solar vehicle.pptxArtificial intelligence based solar vehicle.pptx
Artificial intelligence based solar vehicle.pptx
rrabin2
 
PPt physics -GD.pptx gd topic for physics btech
PPt physics -GD.pptx gd topic for physics btechPPt physics -GD.pptx gd topic for physics btech
PPt physics -GD.pptx gd topic for physics btech
kavyamittal2201735
 
Machine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.pptMachine Vision lecture notes for Unit 3.ppt
Machine Vision lecture notes for Unit 3.ppt
SATHISHKUMARSD1
 
AI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdfAI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdf
Aleksandr Terlo
 
Failover System in Cloud Computing System
Failover System in Cloud Computing SystemFailover System in Cloud Computing System
Failover System in Cloud Computing System
Hitesh Mohapatra
 
direct current machine first part about machine.pdf
direct current machine first part about machine.pdfdirect current machine first part about machine.pdf
direct current machine first part about machine.pdf
sahilshah890338
 
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
 
Von karman Equation full derivation .pdf
Von karman Equation full derivation  .pdfVon karman Equation full derivation  .pdf
Von karman Equation full derivation .pdf
Er. Gurmeet Singh
 
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptxRenewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Renewable-Energy-Powering-Mozambiques-Economic-Growth.pptx
Rofino Licuco
 
Dilatometer Test in Geotechnical engineering an over view .pptx
Dilatometer Test in Geotechnical engineering an over view .pptxDilatometer Test in Geotechnical engineering an over view .pptx
Dilatometer Test in Geotechnical engineering an over view .pptx
RaghuramChallaC011
 
Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5
sureshkumara29
 
AI ppt on water jug problem by shivam sharma
AI ppt on water jug problem by shivam sharmaAI ppt on water jug problem by shivam sharma
AI ppt on water jug problem by shivam sharma
ShivamSharma588604
 
Design of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solvedDesign of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solved
Er. Gurmeet Singh
 
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
samueljackson3773
 
ESIT135 Problem Solving Using Python Notes of Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-3ESIT135 Problem Solving Using Python Notes of Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-3
prasadmutkule1
 
Scientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptxScientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptx
aravym456
 
Cloud Cost Optimization for GCP, AWS, Azure
Cloud Cost Optimization for GCP, AWS, AzureCloud Cost Optimization for GCP, AWS, Azure
Cloud Cost Optimization for GCP, AWS, Azure
vinothsk19
 
AIR FILTER system in internal combustion engine system.ppt
AIR FILTER system in internal combustion engine system.pptAIR FILTER system in internal combustion engine system.ppt
AIR FILTER system in internal combustion engine system.ppt
thisisparthipan1
 
Turbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdfTurbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdf
Totok Sulistiyanto
 
Artificial intelligence based solar vehicle.pptx
Artificial intelligence based solar vehicle.pptxArtificial intelligence based solar vehicle.pptx
Artificial intelligence based solar vehicle.pptx
rrabin2
 
PPt physics -GD.pptx gd topic for physics btech
PPt physics -GD.pptx gd topic for physics btechPPt physics -GD.pptx gd topic for physics btech
PPt physics -GD.pptx gd topic for physics btech
kavyamittal2201735
 

AIによるアニメ生成の挑戦