SlideShare a Scribd company logo
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
00./ 0
#denatechcon
00./ 0
#denatechcon
#denatechcon
#denatechcon
// . /
#denatechcon
// . /
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
(@hamadakoichi)
Mobage
2010 6
Mobage2011 4
DeNA
DeNA2014 10
: ( )
TokyoWebmining
- 1500
- 2010 60
DeNA 8 AI AI
AI
#denatechcon
50 /
#denatechcon
#denatechcon , , , , , .
“ ”. 232 (7/20/2017).
0
3
#denatechcon
5 4 /0 /
5 4 /0 : 6 / .
#denatechcon
Full-body High-resolution Anime Generation with
Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida.
In ECCV Workshop 2018.
(ECCV: European Conference on Computer Vision)
#denatechcon
AGENDA
#denatechcon
AGENDA
#denatechcon
#denatechcon
1 3 5 7
2 4 6 8
#denatechcon
1 3 5 7
2 4 6 8
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
1 3 5 7
2 4 6 8
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
#denatechcon
Generative Adversarial Nets.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio.
arXiv:1406.2661. In NIPS 2014.
#denatechcon
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
Progressive Growing of GANs for Improved Quality, Stability, and Variation.
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
(1024X1024)
(256x256)
#denatechcon
.441 7 545 7 4 /
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
#denatechcon
/ 5. 44 5
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen. In ICLR 2018.
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
+ Spectral Normalization on Generator
+ Self Attention
+ Two Time Scale Update Rule
(512x512)
+ Spectral Normalization on Discriminator
+ Projection Discriminator
SNGAN with Projection (Miyato+, ICLR’18)
SAGAN (Zhang+, 18)
BigGAN (Brock+, ICLR’19)
+ Large Batch Size (256→2048)
+ Large Channel (64→96)
+ Shared Embedding
+ Hierarchical Latent Space
+ Truncation Trick
+ Orthogonal Regularization
+ First Singular Value Clamp
+ Zero-centered Gradient Penalty
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2018.
#denatechcon
(512x512)
Generator
Typical Architecture
Res Block
Architecture for ImageNet at 512x512
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
(512x512)
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
#denatechcon
Large Scale GAN Training for High Fidelity Natural Image Synthesis.
Andrew Brock, Jeff Donahue, Karen Simonyan. arXiv:1809.11096. In ICLR 2019.
(512x512)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
0
0
0
0
0
0 0
0
0
0
0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
0
0
0
0
0
0 0
0
0
0
0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
Full-body anime generation at 1024x1024 with Progressive Structure-conditional GANs
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
00./ 0
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
// . 0/0
Adding action to full-body anime characters with Progressive Structure-conditional GANs
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
(NIPS’17) (NIPS’17)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
(ICLR’18)
(NIPS’17) (NIPS’17)
#denatechcon
Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks
Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto Honda, and Yusuke Uchida. In ECCVW 2018.
#denatechcon
#denatechcon
#denatechcon
AGENDA
#denatechcon
n e
n 4 3 33 36 4
n 0231 33 36 4
n c
b a
)3 (
0 06I J@ N LT A F
( D T
#denatechcon
n
n
n
#denatechcon
n
n
#denatechcon
n C
n 0 1 .
n 0:: /1:0 6 ..:. 21 )()
#denatechcon
n CEAD A
n ) 17:
n 7 2 -( ) 17: 0/ 1 7 0 7 . :0. 0 7 1 7 :
#denatechcon
AGENDA
#denatechcon
#denatechcon
: ( . ) / .
#denatechcon
•
•
•
•
: ( . ) / .
#denatechcon
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
•
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
•
•
O .10 2:: ( / /:7 10
* .) A L A
#denatechcon
O .10 2:: ( / /:7 10
* .) A L A
•
•
#denatechcon
#denatechcon
) ) 3
#denatechcon
) ) 3
#denatechcon
#denatechcon
#denatechcon
#denatechcon
#denatechcon
8 1 1
1
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation.
Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
#denatechcon
/30 480 6 2/81 4C
+ 60 2
• 8 ,
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation.
Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
https://youtu.be/MjViy6kyiqs
Research at NVIDIA: Transforming Standard Video Into Slow Motion with AI
#denatechcon
7
1
Video Frame Synthesis using Deep Voxel Flow.
Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
#denatechcon
N I 7 B7 =: B = P
77 = 7: :=D
• /0 (+ /0 ,
Video Frame Synthesis using Deep Voxel Flow.
Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
BB F=CBC 67 ?. / 3: 1 B
Video Frame Synthesis using Deep Voxel Flow
#denatechcon
D
F 6 + 23C
• 1 76 , P SV P J IOM S R
• ( ,24 c SV P J ,24 cP
/ ++ C
• 1 76 , P J SV P
• 4 8 4 0 L a
Super SloMo(Adobe)
Super SloMo
Deep Voxel Flow
Video Frame Synthesis using Deep Voxel Flow. Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, Aseem Agarwala. In ICCV 2017.
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation. Huaizu Jiang, Deqing Sun, Varun
Jampani, Ming-Hsuan Yang, Erik Learned-Miller, Jan Kautz. In CVPR 2018.
F
#denatechcon
2
#denatechcon
#denatechcon
F
8 0 O T PL
n S 4 )
n F 4 (
W4000301 32 ( 6 A 7
#denatechcon
F F F 0 -1 12 W
n
n S
L ***7* 7 A A
OT 0 -1 12
#denatechcon
#denatechcon
#denatechcon
#denatechcon
n
n
#denatechcon
n
n
n
#denatechcon
n
n
n
n F
#denatechcon
n
n
n
n F
#denatechcon
G
I0 I4
Optical Flow
I1, I2, I3
(Generated)
#denatechcon
G
I0 I4
D
Optical Flow
I1, I2, I3
(Generated)
Ground Truth
#denatechcon
G
I0 I4
D
Optical Flow
I1, I2, I3
(Generated)
Ground Truth
MSE
#denatechcon
G
I0 I4
D
Optical Flow
Ground Truth
I1, I2, I3
(Generated)
Ground Truth
Generated
MSE
MSE
#denatechcon
G
I0 I4
D
Optical Flow
Ground Truth
I1, I2, I3
(Generated)
Ground Truth
Generated
MSE
MSE
#denatechcon
2
#denatechcon
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Local Discriminator
“Real” or “Fake”
Local Patch
(16×16pix)
#denatechcon
Conv-BN-ReLU
Conv-BN-ReLU
Generated Image
Sequense
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU
FC
Local Discriminator
Temporal Discriminator
“Real” or “Fake”
Local Patch
(16×16pix)
Image
Sequense
“Real” or “Fake”
#denatechcon
#denatechcon
Video
#denatechcon
image0 image1 image2 image3 image4Video
#denatechcon
⁃ step size = 4 7FPS -> 30FPS 001.png, 005.png, 009.png, 013.png, 017.png
⁃ step size = 1 30FPS -> 120FPS 001.png, 002.png, 003.png, 004.png, 005.png
#denatechcon
⁃ step size = 4 7FPS -> 30FPS 001.png, 005.png, 009.png, 013.png, 017.png
⁃ step size = 1 30FPS -> 120FPS 001.png, 002.png, 003.png, 004.png, 005.png
#denatechcon
#denatechcon
Frame
Frame
Deep Voxel FlowInput
// . /
Experimental Results: “Anime Frame Generation with Structure-consistent Prediction GANs”
#denatechcon
step size = 1 step size = 4 step size = 7 step size = 10
Input
SPGAN
(Ours)
Deep Voxel Flow
4
// . /
Experimental Results: “Anime Frame Generation with Structure-consistent Prediction GANs”
#denatechcon
Deep Voxel Flow Ours
1.average PSNR/SSIM on test dataset step size=4
PSNR SSIM
Deep Voxel Flow 23.32 0.9294
SPGAN(Ours) 24.27 0.9407
#denatechcon
AGENDA
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
ProgressiveGAN (Karras et al., ICLR 2018) BigGAN (Brock et al., ICLR 2019)
#denatechcon
00./ 0
#denatechcon
00./ 0
#denatechcon
// . /
#denatechcon
// . /
#denatechcon
#denatechcon * 10 2 1
#denatechcon
#denatechcon
L0*** * 2 D 1 A 7
1 D 1 7
#denatechcon
TZ ... ./ 0 KD SL KA N O
N KD SL K N W
(3 Frame) AI (x16 )
Input Frames Generated Frames
78 : : 102*0DeNA AI :
#denatechcon

More Related Content

What's hot (20)

【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
Deep Learning JP
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
Yusuke Uchida
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由
Yoshitaka Ushiku
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ
Takahiro Kubo
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
cvpaper. challenge
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)
Yamato OKAMOTO
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向
Koichiro Mori
 
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
Tenki Lee
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
joisino
 
ナレッジグラフとオントロジー
ナレッジグラフとオントロジーナレッジグラフとオントロジー
ナレッジグラフとオントロジー
University of Tsukuba
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
分散学習のあれこれ~データパラレルからモデルパラレルまで~
分散学習のあれこれ~データパラレルからモデルパラレルまで~分散学習のあれこれ~データパラレルからモデルパラレルまで~
分散学習のあれこれ~データパラレルからモデルパラレルまで~
Hideki Tsunashima
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
Takami Sato
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
ARISE analytics
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Yamato OKAMOTO
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
【DL輪読会】GET3D: A Generative Model of High Quality 3D Textured Shapes Learned f...
Deep Learning JP
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Ken'ichi Matsui
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
Yusuke Uchida
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing[DLHacks]StyleGANとBigGANのStyle mixing, morphing
[DLHacks]StyleGANとBigGANのStyle mixing, morphing
Deep Learning JP
 
画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ画像生成・生成モデル メタサーベイ
画像生成・生成モデル メタサーベイ
cvpaper. challenge
 
これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由これからの Vision & Language ~ Acadexit した4つの理由
これからの Vision & Language ~ Acadexit した4つの理由
Yoshitaka Ushiku
 
画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ画像認識モデルを作るための鉄板レシピ
画像認識モデルを作るための鉄板レシピ
Takahiro Kubo
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)
Yamato OKAMOTO
 
マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向マルチモーダル深層学習の研究動向
マルチモーダル深層学習の研究動向
Koichiro Mori
 
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
CVPR2018 pix2pixHD論文紹介 (CV勉強会@関東)
Tenki Lee
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
joisino
 
ナレッジグラフとオントロジー
ナレッジグラフとオントロジーナレッジグラフとオントロジー
ナレッジグラフとオントロジー
University of Tsukuba
 
ドメイン適応の原理と応用
ドメイン適応の原理と応用ドメイン適応の原理と応用
ドメイン適応の原理と応用
Yoshitaka Ushiku
 
分散学習のあれこれ~データパラレルからモデルパラレルまで~
分散学習のあれこれ~データパラレルからモデルパラレルまで~分散学習のあれこれ~データパラレルからモデルパラレルまで~
分散学習のあれこれ~データパラレルからモデルパラレルまで~
Hideki Tsunashima
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
Takami Sato
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
ARISE analytics
 
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)Domain Adaptation 発展と動向まとめ(サーベイ資料)
Domain Adaptation 発展と動向まとめ(サーベイ資料)
Yamato OKAMOTO
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
cvpaper. challenge
 

Similar to AIによるアニメ生成の挑戦 (11)

Anime Generation with AI
Anime Generation with AIAnime Generation with AI
Anime Generation with AI
Koichi Hamada
 
Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
Devoxx software eco design - @erichoresnyi @greenit
Devoxx   software eco design - @erichoresnyi @greenitDevoxx   software eco design - @erichoresnyi @greenit
Devoxx software eco design - @erichoresnyi @greenit
Community motwin
 
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
streamdata.io
 
20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs
虎の穴 開発室
 
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Koichi Hamada
 
The Rise of Machine-Learned Features
The Rise of Machine-Learned FeaturesThe Rise of Machine-Learned Features
The Rise of Machine-Learned Features
NUS-ISS
 
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
AugmentedWorldExpo
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
Mechanzo PPT
Mechanzo PPTMechanzo PPT
Mechanzo PPT
Thinnkware Noida
 
iPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced PackagingiPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced Packaging
Bill Cardoso
 
Anime Generation with AI
Anime Generation with AIAnime Generation with AI
Anime Generation with AI
Koichi Hamada
 
Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019Generative Adversarial Networks @ ICML 2019
Generative Adversarial Networks @ ICML 2019
Koichi Hamada
 
Devoxx software eco design - @erichoresnyi @greenit
Devoxx   software eco design - @erichoresnyi @greenitDevoxx   software eco design - @erichoresnyi @greenit
Devoxx software eco design - @erichoresnyi @greenit
Community motwin
 
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech#Devoxx fr 2015 ignite   software eco design - @erichoresnyi #cleantech
#Devoxx fr 2015 ignite software eco design - @erichoresnyi #cleantech
streamdata.io
 
20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs20210809 story book_driven_new_system_development_nuxtjs
20210809 story book_driven_new_system_development_nuxtjs
虎の穴 開発室
 
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Generative Adversarial Networks (GANs) and Disentangled Representations @ N...
Koichi Hamada
 
The Rise of Machine-Learned Features
The Rise of Machine-Learned FeaturesThe Rise of Machine-Learned Features
The Rise of Machine-Learned Features
NUS-ISS
 
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
Nathan Shedroff (Seed Vault Ltd): Blockchain & VR: Vision for an Open & Trust...
AugmentedWorldExpo
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
iPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced PackagingiPhone X: Steve Job's iPhone and Advanced Packaging
iPhone X: Steve Job's iPhone and Advanced Packaging
Bill Cardoso
 

More from Koichi Hamada (20)

Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada
 
NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics  NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 
Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017Generative Adversarial Networks (GAN) @ NIPS2017
Generative Adversarial Networks (GAN) @ NIPS2017
Koichi Hamada
 
DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発DeNAのAI活用したサービス開発
DeNAのAI活用したサービス開発
Koichi Hamada
 
対話返答生成における個性の追加反映
対話返答生成における個性の追加反映対話返答生成における個性の追加反映
対話返答生成における個性の追加反映
Koichi Hamada
 
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Koichi Hamada
 
NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics  NIPS 2016 Overview and Deep Learning Topics
NIPS 2016 Overview and Deep Learning Topics
Koichi Hamada
 
DeNAの機械学習・深層学習活用した 体験提供の挑戦
DeNAの機械学習・深層学習活用した体験提供の挑戦DeNAの機械学習・深層学習活用した体験提供の挑戦
DeNAの機械学習・深層学習活用した 体験提供の挑戦
Koichi Hamada
 
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Laplacian Pyramid of Generative Adversarial Networks (LAPGAN) - NIPS2015読み会 #...
Koichi Hamada
 
DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発DeNAの大規模データマイニング活用したサービス開発
DeNAの大規模データマイニング活用したサービス開発
Koichi Hamada
 
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
『MobageのAnalytics活用したサービス開発』 - データマイニングCROSS2014 #CROSS2014
Koichi Hamada
 
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点- 『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
『Mobageの大規模データマイニング活用と 意思決定』- #IBIS 2012 -ビジネスと機械学習の接点-
Koichi Hamada
 
複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理複雑ネットワーク上の伝搬法則の数理
複雑ネットワーク上の伝搬法則の数理
Koichi Hamada
 
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望 データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
データマイニングCROSS 2012 Opening Talk - データマイニングの実サービス・ビジネス適用と展望
Koichi Hamada
 
データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理データマイニングCROSS 第2部-機械学習・大規模分散処理
データマイニングCROSS 第2部-機械学習・大規模分散処理
Koichi Hamada
 
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #HadoopLarge Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Large Scale Data Mining of the Mobage Service - #PRMU 2011 #Mahout #Hadoop
Koichi Hamada
 
"Mahout Recommendation" - #TokyoWebmining 14th
"Mahout Recommendation" -  #TokyoWebmining 14th"Mahout Recommendation" -  #TokyoWebmining 14th
"Mahout Recommendation" - #TokyoWebmining 14th
Koichi Hamada
 
Mahout JP - #TokyoWebmining 11th #MahoutJP
Mahout JP -  #TokyoWebmining 11th #MahoutJP Mahout JP -  #TokyoWebmining 11th #MahoutJP
Mahout JP - #TokyoWebmining 11th #MahoutJP
Koichi Hamada
 
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
10回開催記念 「データマイニング+WEB ~データマイニング・機械学習活用による継続進化~」ー第10回データマイニング+WEB勉強会@東京ー #Toky...
Koichi Hamada
 
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011 『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
『モバゲーの大規模データマイニング基盤におけるHadoop活用』-Hadoop Conference Japan 2011- #hcj2011
Koichi Hamada
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
Koichi Hamada
 
Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9Mahout Canopy Clustering - #TokyoWebmining 9
Mahout Canopy Clustering - #TokyoWebmining 9
Koichi Hamada
 

Recently uploaded (20)

Helium Boosting & Decanting With Hydro Test Machine
Helium Boosting & Decanting With Hydro Test MachineHelium Boosting & Decanting With Hydro Test Machine
Helium Boosting & Decanting With Hydro Test Machine
Paskals Fluid Systems Pvt. Ltd.
 
Air pollution is contamination of the indoor or outdoor environment by any ch...
Air pollution is contamination of the indoor or outdoor environment by any ch...Air pollution is contamination of the indoor or outdoor environment by any ch...
Air pollution is contamination of the indoor or outdoor environment by any ch...
dhanashree78
 
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
 
Biases, our brain and software development
Biases, our brain and software developmentBiases, our brain and software development
Biases, our brain and software development
Matias Iacono
 
Wireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdfWireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdf
AbhinandanMishra30
 
decarbonization steel industry rev1.pptx
decarbonization steel industry rev1.pptxdecarbonization steel industry rev1.pptx
decarbonization steel industry rev1.pptx
gonzalezolabarriaped
 
Introduction to Safety, Health & Environment
Introduction to Safety, Health  & EnvironmentIntroduction to Safety, Health  & Environment
Introduction to Safety, Health & Environment
ssuserc606c7
 
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
prasadmutkule1
 
Design of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solvedDesign of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solved
Er. Gurmeet Singh
 
Scientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptxScientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptx
aravym456
 
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
SnehPrasad2
 
Improving Surgical Robot Performance Through Seal Design.pdf
Improving Surgical Robot Performance Through Seal Design.pdfImproving Surgical Robot Performance Through Seal Design.pdf
Improving Surgical Robot Performance Through Seal Design.pdf
BSEmarketing
 
Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5
sureshkumara29
 
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
prasadmutkule1
 
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
csijjournal
 
Practice Head Torpedo - Neometrix Defence.pptx
Practice Head Torpedo - Neometrix Defence.pptxPractice Head Torpedo - Neometrix Defence.pptx
Practice Head Torpedo - Neometrix Defence.pptx
Neometrix_Engineering_Pvt_Ltd
 
AI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdfAI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdf
Aleksandr Terlo
 
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
 
TM-ASP-101-RF_Air Press manual crimping machine.pdf
TM-ASP-101-RF_Air Press manual crimping machine.pdfTM-ASP-101-RF_Air Press manual crimping machine.pdf
TM-ASP-101-RF_Air Press manual crimping machine.pdf
ChungLe60
 
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptxMathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
ppkmurthy2006
 
Air pollution is contamination of the indoor or outdoor environment by any ch...
Air pollution is contamination of the indoor or outdoor environment by any ch...Air pollution is contamination of the indoor or outdoor environment by any ch...
Air pollution is contamination of the indoor or outdoor environment by any ch...
dhanashree78
 
Biases, our brain and software development
Biases, our brain and software developmentBiases, our brain and software development
Biases, our brain and software development
Matias Iacono
 
Wireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdfWireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdf
AbhinandanMishra30
 
decarbonization steel industry rev1.pptx
decarbonization steel industry rev1.pptxdecarbonization steel industry rev1.pptx
decarbonization steel industry rev1.pptx
gonzalezolabarriaped
 
Introduction to Safety, Health & Environment
Introduction to Safety, Health  & EnvironmentIntroduction to Safety, Health  & Environment
Introduction to Safety, Health & Environment
ssuserc606c7
 
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
ESIT135 Problem Solving Using Python Notes of Unit-2 and Unit-3
prasadmutkule1
 
Design of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solvedDesign of cannal by Kennedy Theory full problem solved
Design of cannal by Kennedy Theory full problem solved
Er. Gurmeet Singh
 
Scientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptxScientific_Thinking_and_Method_GE3791.pptx
Scientific_Thinking_and_Method_GE3791.pptx
aravym456
 
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
Common Network Architecture:X.25 Networks, Ethernet (Standard and Fast): fram...
SnehPrasad2
 
Improving Surgical Robot Performance Through Seal Design.pdf
Improving Surgical Robot Performance Through Seal Design.pdfImproving Surgical Robot Performance Through Seal Design.pdf
Improving Surgical Robot Performance Through Seal Design.pdf
BSEmarketing
 
Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5Design and Analysis of Algorithms Unit 5
Design and Analysis of Algorithms Unit 5
sureshkumara29
 
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
ESIT135 Problem Solving Using Python Notes of Unit-1 and Unit-2
prasadmutkule1
 
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
INVESTIGATION OF PUEA IN COGNITIVE RADIO NETWORKS USING ENERGY DETECTION IN D...
csijjournal
 
AI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdfAI-Powered Power Converter Design Workflow.pdf
AI-Powered Power Converter Design Workflow.pdf
Aleksandr Terlo
 
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
 
TM-ASP-101-RF_Air Press manual crimping machine.pdf
TM-ASP-101-RF_Air Press manual crimping machine.pdfTM-ASP-101-RF_Air Press manual crimping machine.pdf
TM-ASP-101-RF_Air Press manual crimping machine.pdf
ChungLe60
 
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptxMathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
Mathematics behind machine learning INT255 INT255__Unit 3__PPT-1.pptx
ppkmurthy2006
 

AIによるアニメ生成の挑戦