タグ

アルゴリズムに関するLuigitefuのブックマーク (13)

  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • 「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」:最強最速アルゴリズマー養成講座(1/3 ページ) 典型的なアルゴリズムをたくさん知っている人間が最強か――? いいえ、典型的なアルゴリズムを知らなくても、違ったアプローチで答えに迫る方法はいくらでも存在します。短い実行時間で正確な答えを導き出せるかを考える習慣をつけましょう。 アルゴリズマー養成講座と銘打ってスタートした連載。もしかすると読者の方の興味は、はやりのアルゴリズムや汎用的なアルゴリズムを知ることにあるのかもしれません。しかし、今回は、いわゆる「典型的なアルゴリズム」を用いずに進めていきたいと思います。 なぜ典型的なアルゴリズムを用いないのか。それは、典型的なアルゴリズムばかりを先に覚え、それだけでTopCoderなどを戦っていこうとした場合、それに少しでもそぐわない問題が出た場合に、まったく太刀打ちできなくなってしまう

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」
  • JGAP

  • ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室

    ゲームの作り方とアルゴリズムをジャンル別にまとめてみました。ゲーム制作や、プログラミングの勉強用にご活用ください。言語別ゲームプログラミング制作講座一覧もあわせてお読みください。 リンク切れがおきていたものは、URLを表示しておくので、Internet Archiveなどでキャッシュを表示させてみてください。 RPG ゲームの乱数解析 乱数を利用した敵出現アルゴリズムの解説 各種ゲームプログラム解析 FF、ドラクエ、ロマサガのプログラムの解析。乱数の計算など ダメージ計算あれこれ(http://ysfactory.nobody.jp/ys/prg/calculation_public.html) ダメージの計算式 エンカウントについて考えてみる エンカウント(マップでの敵との遭遇)の処理方法いろいろ RPGの作り方 - ゲームヘル2000 RPGのアルゴリズム ドルアーガの塔 乱数の工夫の

    ジャンル別ゲームの作り方とアルゴリズムまとめ - ネットサービス研究室
  • tf-idf - Wikipedia

    情報検索の分野において、tf–idf (または、 TF*IDF、TFIDF、TF–IDF、Tf–idf)は、term frequency–inverse document frequencyの略であり、コーパスや収集された文書群において、ある単語がいかに重要なのかを反映させることを意図した統計量(数値)である[1]。また、tf-idfは情報検索や、テキストマイニング、ユーザーモデリング(英語版)における重み係数(英語版)にもよく用いられる。ある単語のtf-idfの値は文書内におけるその単語の出現回数に比例して増加し、また、その単語を含むコーパス内の文書数によってその増加が相殺される。この性質は、一般にいくつかの単語はより出現しやすいという事実をうまく調整することに役立っている。今日、tf-idfはもっとも有名な語の重みづけ(term-weighting)手法である。2015年に行われた研究

  • グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ

    JGraphT JGraphTは、Javaのグラフライブラリです。グラフの描画ではなく、グラフ理論のモデルとアルゴリズムの方にフォーカスしています。とても使いやすかったので、紹介してみます。 無向グラフ UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>( DefaultEdge.class); g.addVertex("a"); g.addVertex("b"); g.addVertex("c"); g.addEdge("a", "b"); g.addEdge("b", "c"); System.out.println(g.vertexSet()); System.out.println(g.edgeSet()); System.out.println(g.edgesOf("c"));

    グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ
  • Perlでアニメ顔を検出&解析するImager::AnimeFace - デー

    というのを作ったので自己紹介します。 2月頃から、コンピュータでアニメ顔を検出&解析する方法をいろいろ試しつつ作っていて、その成果のひとつとして、無理やり出力したライブラリです。 はじめに はじめにざっとライブラリの紹介を書いて、あとのほうでは詳細な処理の話を僕の考えを超交えつつグダグだと書きたいと思います。 Imager::AnimeFaceでできること Imager::AnimeFaceは、画像に含まれるアニメキャラクター的な人物の顔の位置を検出し、さらに目や口など顔を構成する部品位置や大きさの推定、肌や髪の色の抽出を簡単に行うことができるライブラリです。 これらが可能になると、 画像から自動でいい感じのサムネイルを作成できる 動画から自動でいい感じのサムネイルを作成できる 自動的にぐぬぬ画像が作れる 自動的に全員の顔を○○にできる 顔ベースのローカル画像検索 など、最新鋭のソリューシ

    Perlでアニメ顔を検出&解析するImager::AnimeFace - デー
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • Aho Corasick 法 - naoyaのはてなダイアリー

    適当な単語群を含む辞書があったとします。「京都の高倉二条に美味しいつけ麺のお店がある」*1という文章が入力として与えられたとき、この文章中に含まれる辞書中のキーワードを抽出したい、ということがあります。例えば辞書に「京都」「高倉二条」「つけ麺」「店」という単語が含まれていた場合には、これらの単語(と出現位置)が入力に対しての出力になります。 この類の処理は、任意の開始位置から部分一致する辞書中のキーワードをすべて取り出す処理、ということで「共通接頭辞検索 (Common Prefix Search)」などと呼ばれるそうです。形態素解析Wikipediaはてなキーワードのキーワードリンク処理などが代表的な応用例です。 Aho Corasick 法 任意のテキストから辞書に含まれるキーワードをすべて抽出するという処理の実現方法は色々とあります。Aho Corasick 法はその方法のひと

    Aho Corasick 法 - naoyaのはてなダイアリー
  • はてなブックマーク全文検索機能の裏側

    そろそろ落ち着いて来たころ合いなので、はてなブックマーク全文検索機能の裏側について書いてみることにします。 PFI側は、8月ぐらいからバイトに来てもらっているid:nobu-qと、id:kzkの2人がメインになって進めました(参考: 制作スタッフ)。数学的な所は他のメンバーに色々と助言をしてもらいました。 はてな側は主にid:naoyaさんを中心に、こちらの希望や要求を聞いて頂きました。開発期間は大体1〜2か月ぐらいで、9月の上旬に一度id:naoyaさんにオフィスに来て頂いて合宿をしました。その他の開発はSkypeのチャットで連絡を取りながら進めてました。インフラ面ではid:stanakaさん、契約面ではid:jkondoさん、id:kossyさんにお世話になりました。 全文検索エンジンSedue 今回の検索エンジンはSedue(セデュー)という製品をベースにして構築しています。Sedu

    はてなブックマーク全文検索機能の裏側
  • Undo,Redoの実装って何十回もやってる気がする - あしあと日記

    undo,redoの実装って何十回もやってる気がする。毎回同じパターンだ。undo,redoが登場するような編集ソフトは大体同じパターンに落とせる。フレームワークも作った。ブログにそういう内容を書きたいが面倒くさい。需要があれば面倒でも書くんだけどなあ http://twitter.com/youpychan/status/994486992 という発言をしたら何人か反応を頂いたので書いてみることにする。 需要があるなら書こう。undo,redoだけじゃなくてグラフィカルな編集ソフト全般の話をいつかまとめたいと思っていたので、ちょいとシリーズで書いてみようかとおもう http://twitter.com/youpychan/status/994636764 書こうと思う。 まずUndo,Redoについて。 Unod,Redoってみなさんどういう風に実装しているでしょうか? 私はコマンドパタ

    Undo,Redoの実装って何十回もやってる気がする - あしあと日記
  • アルゴリズムコンテストの挑み方 (3) - d.y.d.

    17:19 08/11/27 TopCoder Code Jam の練習に……と思ってしばらく前から TopCoder のSRMに参加してたのですが、 せっかくなので cafelier@SRM に記録をつけることにしました。 どういう試行錯誤をしながら提出した時のコードにいたったのかを、 できるだけ詳細にメモろうと思っています。 426以前のは記憶から掘り起こして書いたのでちょい大ざっぱですが。 これまで何回かここで書いたような整然とした考え方を当に自分がしているかいうと、 してないよなー、と薄々思ってしまっているので、じゃあどういう風にやっているんだろうかと。 自分のふり見て我がふり直す。 20:26 08/11/24 論文 PLAN-X 2009 通ったみたいです。ばんざい。 ただでさえD論まったく間に合う気がしないのに、camera ready版なんて作ってる時間が… オートマト

  • 1