小谷太郎 @tarokotani 大学教員兼ものかき。一行科学知識と科学ネタ駄洒落をつぶやいています。これがけっこう大変で失意体前屈寸前。 amazon.co.jp/-/e/B004B8EA4E 小谷太郎 @tarokotani 娘(高3)の物理の問題が難しいというので「どれ物理学で博士号を取得しているお父さんがちょっとみてやろう」といって手を出したら普通に解けなくて父親と博士号の権威がピンチ。 2024-10-19 19:30:07
小谷太郎 @tarokotani 大学教員兼ものかき。一行科学知識と科学ネタ駄洒落をつぶやいています。これがけっこう大変で失意体前屈寸前。 amazon.co.jp/-/e/B004B8EA4E 小谷太郎 @tarokotani 娘(高3)の物理の問題が難しいというので「どれ物理学で博士号を取得しているお父さんがちょっとみてやろう」といって手を出したら普通に解けなくて父親と博士号の権威がピンチ。 2024-10-19 19:30:07
結論が計算に埋もれていて要点を掴みにくい しかしながら内容を丁寧に追いかけるには,途中計算や説明が省かれすぎている と感じることがあるかもしれない. 「帯に短し襷に長し」である. そこでこのページでは「要点の抽出」と「途中計算・説明の補足」を基本方針とした物理のノートを公開している (例外もある). 教科書として読めるノートも多くある. 教科書別 【PDF】ランダウ=リフシッツ『力学』 力学の教科書 エリ・デ・ランダウ,イェ・エム・リフシッツ,2013,ランダウ=リフシッツ理論物理学教程 力学 (増訂 第 3 版)(広重徹,水戸巌訳),東京図書株式会社,東京 を,要約と途中計算の分離した見通しの良い自己完結的テキストへと再構成し,さらに補足・考察を加えたノートである. 【PDF】ランダウ=リフシッツ『場の古典論』前半 場の古典論の教科書 エリ・デ・ランダウ,イェ・エム・リフシッツ,2015
山下 裕毅 先端テクノロジーの研究を論文ベースで記事にするWebメディア「Seamless/シームレス」を運営。最新の研究情報をX(@shiropen2)にて更新中。 米ペンシルベニア大学などに所属する研究者らが発表した論文「Microscopic Origin of the Entropy of Astrophysical Black Holes」は、ブラックホール内部をモデル化し、それらの状態の数を数え上げる式を導き出し、ブラックホールの総エントロピーを計算した研究報告である。 ▲論文のトップページ スティーブン・ホーキング氏とヤコブ・ベッケンシュタイン氏は1970年代に、ブラックホールはエントロピーを持つこと、そしてそのエントロピーがブラックホールのホライズンの面積に比例することを発見した。しかし、統計力学の観点から、このエントロピーがブラックホール内部のどのような微視的状態の数に対
星として晩年の状態にあるとされる、オリオン座「ベテルギウス」は、たびたび天文ニュースの話題にのぼっており、現在非常に膨張した状態になっていると予測されています。 その直径は10億キロメートル以上に達していると考えられ、その全体のサイズは太陽の約1000倍に匹敵します。 そんなベテルギウスの表面は、現在飛んでもないことになっている可能性があるようです。 その事実はベテルギウスの自転速度の調査から示されました。 最近の調査によると、ベテルギウスは秒速5キロメートルという超高速で自転しているように見えると報告されたのです。 しかし専門家いわく、ベテルギウスほどの巨大な恒星であれば、理論的にはこの秒速5kmという数値より2桁は遅いはずだといいます。 では、どうしてこんな超高速に見えたのでしょうか? 独マックス・プランク天体物理学研究所(MPI for Astrophysics)が新たに調査した結果
タピオカやカエルの卵ではありません。 英国のノッティンガム大学(UoL)で行われた研究により、希ガスであるクリプトン原子(Kr)をカーボンナノチューブの内部に閉じ込めることで「一次元の気体」を作成し、その様子をリアルタイムで視覚的に捉えることに成功しました。 実際に撮影された映像では、クリプトン原子が狭いチューブ内である種の「交通渋滞」に巻き込まれており、数珠つなぎに配置されている様子が見て取れます。 研究者たちは「希ガス原子がチューブ内部で一次元ガスとして生成されている様子を撮影したのは今回の研究が世界初である」と述べています。 しかし、研究者たちはいったいどうやって希ガス原子をチューブに詰めたのでしょうか? そして一次元ガスを生成することに、いったいどんな意義があるのでしょうか? 今回はまず実験に使われたカーボンナノチューブとフラーレンについて解説しつつ、研究の興味深い点を紹介したいと
オルダーソン円盤の模式図 オルダーソン円盤 [1] [2] (オルダーソンえんばん、英:Alderson disk)とはラリー・ニーヴンのリングワールドやダイソン球のような天文学的サイズの架空の円盤である。提唱者であるダン・オルダーソンにちなんで名付けられた。 概要[編集] オルダーソン円盤は厚さが数千マイルの巨大な平たいレコードやCDのような形状をしている。 太陽は円盤の中心の穴にあり、 円盤の外周は火星または木星の軌道とほぼ同等。 提案によれば、十分に大きなディスクはその太陽よりも大きな質量を持つことになる。 中心の穴の周囲の縁は、大気が太陽に流れていくのを防ぐため高さ1000マイル(1600km)の壁に囲まれている。 外側の場合も縁自体が大気を閉じ込める。 円盤にかかる機械的応力は、既知の材料が耐えることができるものをはるかに超えているため、材料および建設工学が十分に進歩するまで、そ
比重の大きい「重水」を凍らせて、通常の水に入れたらどうなるのか? 明治大学の宮下芳明教授(@HomeiMiyashita)が、X(Twitter)で公開した実験の様子が不思議です。 通常の水よりも密度の高い、重水で作った氷 水に入れると……? 重水とは、文字通り「通常の水よりも比重が大きい水」のこと。水素と酸素からなる通常の水分子とは異なり、水素の同位体である重水素(デューテリウム)などが含まれます。 宮下さんは重水から氷を作り、通常の水で満たしたメスシリンダーへ投入。通常の氷ならば水面に浮かぶところが、重水の氷はゆっくりと底まで沈んでいきました。 「通常よりも重い水」でできている以上、当たり前でではあるのだけれど、「氷が沈む」って不思議 理屈で言えば当然のことながら、氷が沈む様子はとても不思議で、「興味深い」「まさに重い水」と注目を集めることに。「貴重な映像」「重水素の中性子が水素より1
by Julien Bobroff 特定の物質を冷やすと電気抵抗が0になる「超電導」という現象について、「常温でも超電導を実現する」というこれまでの常識を覆す論文が2023年7月22日に提出されました。この論文の内容について、有機化学者兼ライターのデレク・ロウ氏が解説しています。 Breaking Superconductor News | Science | AAAS https://www.science.org/content/blog-post/breaking-superconductor-news 金属や化合物などの物質を極低温まで冷やす起こる超電導は、基本的に-200度近い温度まで冷やさないと生じず、液体窒素の沸点である77K(約-196度)以上の温度で超電導現象を起こすものでようやく「高温超電導」と呼ばれるほど、低温環境下での発生が常識であるものとして知られていました。 し
臓器移植に革命が起こるかもしれません。 米国のミネソタ大学(UMN)で行われた研究により、ラットの腎臓全体を100日間凍結保存した後に解凍し、別のラットに移植することに成功しました。 移植された腎臓はラットの中で正常に機能しており、ラットは普通に生活することができました。 臓器全体の機能を保ったまま「摘出➔凍結➔保存➔解凍➔移植」と全ての流れを完璧に成功させたのは、今回の研究が世界ではじめてとなります。 研究者たちは臓器全体を安全に凍結保存できるようになれば、臓器移植の分野に革命的な変化が起こり、多くの人々を救えると述べています。 しかしこれまで行われてきた類似の試みは全て失敗しているのに、なぜ今回は成功できたのでしょうか? 研究内容の詳細は2023年6月9日に『Nature Communications』にて公開されました。
まるでSFの世界の話のようだが、ヨーロッパの研究グループが、時間を逆転させて、過去の状態に戻す方法を考案したそうだ。しかも実験で実証することにも成功したという。 理論上は可能だったとしても、その方法で実際に人間を若返らせることは難しい。 それでも量子の世界なら、彼らが考案した「巻き戻しプロトコル」を利用することで、まるで映画を巻き戻すかのように、粒子を過去に戻すことができる。 ただ時間を逆行させるだけでなく、物理系の時間を奪うことで時間を早めることすらできるというが、一体どんな方法ならばそんなことが可能になるのだろうか? 録画映像を巻き戻すかのように時間が逆行 この驚くべき理論と実験結果は、オーストリア科学アカデミーとウィーン大学の研究チームによる一連の研究(『Physical Review X』『Quantum』『Arxiv』『Physical Review Letters』『Optic
上の画像を見てほしい、白い無数の輝く点は、満天の星空や銀河かと思いきや実はそうではない。それらは活動中の「超大質量ブラックホール」だ。 超大質量ブラックホールは、太陽の10万~100億倍の質量をもつブラックホールで、銀河の中心にあると考えられている。 2021年に公開されたこの画像には、そんな怪物が25,000個も映っている。 つまりは、ヨーロッパにも匹敵する巨大な電波望遠鏡によって作られた、史上最高に詳細なブラックホールの地図なのだ。 ブラックホールから放たれた超低周波の電波をとらえて可視化 光すら逃げられないと言うだけあって、何もしてないブラックホールを見つけるのは難しい。その存在を示す放射線を出さないからだ。 一方、ブラックホールが貪欲なまでに物質を飲み込んでいる最中には、その周囲にある塵やガスの円盤から強力な放射線が放たれる。 天文学者がブラックホールの存在を知ることができるのは、
最近、NASAのジェイムズ・ウェッブ宇宙望遠鏡(JWST)が、ビッグバンからわずか5億年後という領域に大質量銀河を6つも発見しました。 従来の宇宙論ではこの年代の宇宙には小さな赤ちゃん銀河しか存在しないはずであり、なぜ天の川レベルの大質量銀河が存在するのか説明することができません。 オーストラリア・スウィンバーン工科大学(Swinburne University of Technology)の天文学者イヴォ・ラベ氏ら研究チームは、「これらの銀河は、現在の宇宙論のモデルに当てはめるには大きすぎる」と述べ、非公式に「ユニバース・ブレイカー」と呼んでいます。 研究の詳細は、2023年2月22日付の科学誌『Nature』に掲載されました。 ‘We just discovered the impossible’: how giant baby galaxies are shaking up our
水滴は水面でトランポリンができるようです。 チリのサンティアゴにあるチリ大学(University of Chile)で行われた研究によって、振動する水の波の上で水滴を90分間にわたり「1度も融合せずに」何千回も跳ねさせることに成功しました。 水面に落ちた水滴は通常、直ぐに水面に融合してしましますが、ソリトンと呼ばれる特殊な波形をした水の上では、同じ水滴を延々と「ジャグリング」させられたようです。 研究者たちは水滴が跳ねる原理を応用すれることで、比較的大きな粒子を他と混ざらないように保持するツールになると述べています。 しかし、いったいどんな不思議な仕組みが働いて、水面に落ちた水滴が何千回もポヨンポヨンと跳ね返ることになったのでしょうか? 研究内容の詳細は2023年2月10日に『Physical Review Fluids』にて掲載されました。
NASAの運営するAstronomy Picture of the Day(APOD)は6月19日、ブラウザゲーム『Super Planet Clash』をサイト上で公開した。 『Super Planet Clash』は、惑星系に天体を投入していくゲームだ。投入された天体は公転を始めるが、その軌道はほかの天体の引力による影響を受ける。そのため、考えなしに天体を投入していくとそれぞれの軌道が狂ってしまう。そして、天体同士が衝突する、またはひとつでも天体が軌道から離脱すると、ゲームオーバーとなる。プレイヤーは天体の軌道をなるべく維持しつつ、1000年続く星系を作ることを目指す。 天体は、星系内の任意の位置をクリックして投入可能。投入できる天体のサイズはEarthと、Ice giant/Giant planet/Brown dwarf/Dwarf starの計5種類。それぞれEarthと比べて1
古典力学 – オススメの参考書 (上級者向けを意識して) 物理学の入口,それは古典力学. 書店に出向けば古典力学 (以下,しばしば単に力学) のテキストが必ずあるはずだ. 何よりも一つの体系立った最も古い物理学なので,一口にテキストといっても微分積分学のテキストのように,星の数ほどある. 微分積分学 – オススメの参考書 (高校数学との接続を意識して) その中でも以下では上級者向に的を絞って紹介したい. というのも,入門者・初級者向のテキストは現代において「積極的に出版・宣伝される対象」として優遇されており,「わざわざ紹介する」というのが正に無駄骨を折る行為に等しいからである. 一方で上級者向は絶滅の危機といっても過言ではない. ここでは絶版本も惜しげなく紹介する. 図書館に行けばあるはずだ.閉架にもなかったら正に絶滅しているということだ. そういう年代に入ってきている.と思う. ただいき
物質を構成する基本的な粒子である素粒子の1つについて、実験から解析された質量が予測より大きいという結果が得られたことを筑波大学などの国際的な研究グループが発表し、素粒子物理学の柱となっている「標準理論」の修正を迫る可能性があるとしてさらなる検証が必要だとしています。 「標準理論」は現在の素粒子物理学の柱となっている理論で、素粒子の種類や質量などの特性を説明できるとされています。 筑波大学の受川史彦教授などの国際的な研究グループは、力を伝えるWボソンと呼ばれる素粒子についてアメリカの研究機関で行った実験データを解析したところ、質量が標準理論の予測より0.09%ほど大きいという結果が得られたということです。 誤差は0.01%とこれまでで最も高い精度で解析しているため、「標準理論」の修正を迫る可能性があり、さらなる検証が必要だとしています。 今回の結果について、一部の研究者から新たな素粒子が存在
◆大学1年生のときに読みたかった 量子力学の教科書 ◇「線形代数がわかれば量子力学もわかる」――私が書いた本 私は昨年(2021年)11月に『量子力学10講』という題の本を名古屋大学出版会から出しました。タイトルどおり10回の講義で量子力学を解説するような形で書いた本です。読者としては現代の理系の学部1年生を想定しており、学生が初めて独習する量子力学の本として使えるようにと思って書きました。また、本の正誤訂正と補足ノートをネットに公開しています。 「線形代数がわかれば量子力学もわかる」をスローガンに、本書では線形代数の延長として量子力学を捉えるというスタイルを採りました。竹内外史氏の『線形代数と量子力学』(裳華房)が、まさにそういう方針で書かれた本だと思います。『線形代数と量子力学』は、たんに線形代数に量子力学を「味付け」した本ではなく、ヒルベルト空間と射影作用素・自己共役作用素・ユニタリ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く