You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Raspberry Pi4 単体で TensorFlow Lite はどれくらいの速度で動く?【2020年12月版】RaspberryPiTensorflowLitexnnpack 1. はじめに 今から半年前の2020年6月、ラズパイ4上でTensorFlow Liteを使った様々なAI認識アプリを動かしてみて、その動作速度をまとめました。 当時のTensorFlowはバージョン2.2でしたが、現在は 2.4(rc4) へと進んでいます。進化が極めて速いDeepLearningの世界において、この半年間でTensorFlow Liteはどう変化したでしょうか。もし「手持ちのアプリは何も変えてないのに、TensorFlow Liteを新しくするだけでめっちゃ速く動くようになったぜ」というのだと嬉しいですよね。 本記事では、前回計測に用いたアプリを再び最新版のTensorFlow Lite環
BodyPix と PoseNet ってなに? BodyPixは人体の24種類部位の領域分割(セグメンテーション)を行う TensorFlow.js 上で動作するオープンソースソフトです: 領域分割に加えて姿勢推定(PoseNet)も同時に行うことができています。PoseNet を開発した Google のグループが開発していて、ソースコードも共通な部分があり、共通化が検討されているようですね: Add BodyPix ResNet model #280 紹介記事 [Updated] BodyPix: Real-time Person Segmentation in the Browser with TensorFlow.js(Nov. 18, 2019) Introducing BodyPix: Real-time Person Segmentation in the Browser w
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 【はじめに】 本記事は 「機械学習をどう学んだか by 日経 xTECH ビジネスAI② Advent Calendar 2019」 の19日目になります。 おじさんSEの私がどうやって機械学習を勉強したかを記します。 きっかけは当時抱えていた分類課題において、「機械学習が使えるんじゃね?」というところから始まりました。 闇雲にやっていたので正直記憶は曖昧です。 経歴 プログラム歴は30年近くあります。 小学生の時に覚えたMS BASICから始まり、Z80アセンブラ、MC68000アセンブラ、FORTRAN、C(UNIX)、C++(Ma
背景 現在、TensorFlow、Chainer他多数のDeepLearning用ライブラリが公開されています。 本格的なアプリケーションで使うには実行スピード、クオリティ、拡張性、ドキュメント、コミュニティの充実等多くの面で、それらの中から選択して使用するのが鉄板な状況です。もちろん、私もメインではそれらを使わせてもらっています。これらのライブラリ、例えばtensorFlowではcomputatoin graphを構築、operationを追加してそれを実行というイメージで(行列、数式で取り扱うイメージ)、根底にある古典的なニューロンの結合という考え方が隠されている気がします。むしろ、そのことは忘れて突き進んでしまっても良い気はしますが、自分の理解を深める意味でもニューロン指向でスクラッチからニューラルネットワークを書いてみました。 使用言語は機械学習分野ではPythonに残念ながら遅れ
ネットワークの重みや各ニューロンがどういう入力の時に発火するのかが、学習していく過程で各時刻可視化されてとても良い教材です。 http://playground.tensorflow.org/ うずまきのデータセットに関して「中間層が1層しかないとうずまき(線形非分離な問題)は解けない」という誤解があるようなので、まずは1層でできるという絵を紹介。なお僕のタイムライン上では id:a2c が僕より先に気付いていたことを名誉のために言及しておきます。 で、じゃあよく言われる「線形非分離な問題が解けない」ってのはどういうことか。それはこんな問題設定。入力に適当な係数を掛けて足し合わせただけでは適切な境界を作ることができません。 こういうケースでは中間層を追加すると、中間層が入力の非線形な組み合わせを担当してくれるおかげで解けなかった問題が解けるようになります。 1つ目のデータセットでは特徴量の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く