機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning) 作者: 加藤公一出版社/メーカー: SBクリエイティブ発売日: 2018/09/21メディア: 単行本この商品を含むブログを見る発売されてからだいぶ経ちますが、構想段階の頃より著者の「はむかず」さんこと加藤公一さんからお話を伺っていて注目していたこちらの一冊をようやく一通り読みましたので、サクッと書評めいた何かを書いてみようかと思います。 各章の概要 言うまでもなく実際の内容は皆様ご自身でお読みいただきたいのですが、これまでの書評記事同様に概要を簡単にまとめておきます。 第01章 学習を始める前に Python環境やAnacondaのインストールについての説明もなされているんですが、重要なのは後述する「本書は何を含まないか」という節。ここに本書の狙いの全てが書かれていると言って
英語版はこちら。 TensorFlowの登場以降、OSSベースの機械学習の盛り上がりは加速しています。Kerasの作者のFrançois Cholletさんの言葉が、この状況を非常に端的に表しています。これだけでも十分だとは思いますが、この記事では、なぜオープンソースの機械学習が強いのか、最近のどういった流れがあるのかを整理したいと思います。 tl;dr機械学習やDeep Learningのフレームワークが充実してきた論文が査読前に公開され、他社も簡単にアルゴリズムの検証ができるようになった多くのプレーヤーの参戦により、アカデミアでの機械学習の研究がレッドオーシャン化した他社にないアルゴリズムで一発勝負、実装は秘密、というアプローチが厳しい牧歌的な時代5年前10年前の世界では、先端の機械学習に取り組んでいるのは大学などの研究室、大企業の研究所や一部の先進的な企業がほとんどでした。特に、ラベ
「スゲー。これが今の日本の技術か……」 「世間はここまで進歩していたのか」 開発したのは、兵庫県西脇市に本社を置くシステム開発会社・ブレイン。創業35年、いまも社員20人のうち約16人がエンジニアという、生粋の技術者集団だ。 約10年前にゼロから開発スタート マシンの名前は「BakeryScan」(ベーカリースキャン)。「お店に提供を始めたのは今から4年ほど前。最近になって突然『ネットですごい反響がある』と人に言われて驚いた」――ブレインの原進之介執行役員はこう話す。 BakeryScanの開発が始まったのは2008年にさかのぼる。きっかけは、地元・兵庫県のパン店社長から相談を受けたことだった。 「人が足りなくて困っている。経験の浅い外国人スタッフでもレジ打ちや接客ができるようなシステムを作ってほしい」――。 だが、同社のパンに関する専門知識はゼロ。そこから待ち受けていたのは、約6年にわた
こんにちは、スマートニュースの徳永です。深層学習業界はGANだとか深層強化学習だとかで盛り上がっていますが、今日は淡々と、ニューラルネットワークの量子化の話をします。 TL;DR パラメータだけを量子化するのであれば、ほぼ精度を落とさずに、パラメータのデータ容量は1/16程度にまで削減できる パラメータ、アクティベーション、勾配のすべてを量子化し、推論だけでなく学習までもビット演算だけで実現する研究が進んできている 現在は深層学習 = GPU必須というぐらいの勢いがあるけど、量子化の研究が進むと、今後はどうなるかわからないよ はじめに 情報理論における量子化とは、アナログな量を離散的な値で近似的に表現することを指しますが、本稿における量子化は厳密に言うとちょっと意味が違い、十分な(=32bitもしくは16bit)精度で表現されていた量を、ずっと少ないビット数で表現することを言います。 ニュ
この記事はトレタ Advent Calendar 2016の22日目です。 21日目はswdhの ActiveRecordオブジェクトを関連ごとシリアライズしてデシリアライズするでした。 スナップショット的にその時点のモデルを関連モデル含めて保存したい、っていう要望はBtoBやってると結構遭遇しますね。テーブルをちゃんと正規化すればするほど難しくなるやつなのでgem化されてるとありがたいです。 さて、この記事ではゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装を読んでpythonに入門するところから初めてニューラルネットワークを実際に実装して見た所感を記述します。平たく言えば読書感想文です。 ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装 作者: 斎藤康毅出版社/メーカー: オライリージャパン発売日: 2
2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一本化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod
これは、機械学習に関する基礎知識をまとめたシリーズ記事の目次となる記事です。まとめることで知識を体系化できて自分自身の為にもなるので、こういうアウトプットをすることは大事だと思っています。ただ、普通にブログ記事を書くのも面白くないので、ちょっといつもとは違う方法でやってみようというのが今回のシリーズ記事。 2 ちゃんねるのキャラクターが登場人物として出てきて、彼らが会話して話が進んでいく「やる夫で学ぶシリーズ」という講義調の形式のものがあります。個人的にはやる夫で学ぶシリーズや 数学ガール のような会話形式で話が進んでいく読み物は読みやすいと思っています。さらに、先日みつけた やる夫で学ぶディジタル信号処理 という資料がとてつもなくわかりやすく、これの真似をして書いてみようと思い至りました。記事中のやる夫とやらない夫のアイコンは http://matsucon.net/material/m
移転しました。 https://chezo.uno/post/2016-05-29-sonomoderu-guo-xue-xi-siteruno-wei-xue-xi-nano-tokun-tutara/
2. 目次 • Deep Learning とは" – 機械学習について" – 従来の NN とのちがい" – Deep Learning のブレイクスルー" • dA (Denoising Autoencoders) をうごかす" – 数理モデルの解説" – Python で実装する前準備" – コードレビュー" – 実行結果" • RBM (Restricted Boltzmann Machines) をうごかす" – 数理モデルの解説" – 実行結果" • まとめ 4. Deep Learning とは • 入力信号からより抽象的な概念を学ぶ・特徴を抽出する 機械学習の手法の集合です " “ニューラルネットとどう違うの?”! • ニューラルネットを多層にしたんです " “従来のニューラルネットワークと何が違うの?”! • ひとつひとつのレイヤー間でパラ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く