You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Rules of Machine Learning: Stay organized with collections Save and categorize content based on your preferences. Best Practices for ML Engineering Martin Zinkevich This document is intended to help those with a basic knowledge of machine learning get the benefit of Google's best practices in machine learning. It presents a style for machine learning, similar to the Google C++ Style Guide and othe
先日機械学習界隈の方とDockerの話をした際、Makefileを使って機械学習環境の整備をしている人は実は少数派なんじゃないかと感じました。 機械学習で使うコマンドは引数が長く、とても覚えられるものじゃありません。暗記できていてもミスタイプしたり、tmux内とかだと折り返されて何書いてるかよくわからなくなりがち 。Ctrl+Rとかで検索かけようとしても大体はdocker...から始まるのでタイプ数多くなりがち。 Makefile は、Docker のコマンドをいい感じにまとめやすく、jupyter notebook に使う長ったらしいコマンド jupyter notebook --port 8888 --ip="0.0.0.0" --allow-root なども簡略化できます。そういうわけで、全体的な生産性の向上に繋がると信じています。 今回紹介する Makefile は Docker
おまたせしました この度、ついにこの記事を完成させることができました。これは私が数年前からずっと書きたいと思っていた、ウェブのアクセスログに対する、機械学習を使った異常検知の実例です。私は事あるごとに(※1)「情報セキュリティ分野でもデータサイエンスの技術は非常に重要だ」と繰り返していますが、この記事の内容はまさにその1つの証となると思います。この記事で示される内容を見れば、「うわ、機械学習、マジでヤバイい(語彙力)んだな...」となるでしょう。以下に心当たりのあるセキュリティエンジニアはぜひ読んで、そして実践してみてください。 機械学習に興味はあるものの、どこから手を付ければよいのかイメージがわかない 本当にAIやデータサイエンス、機械学習がセキュリティの分野で役に立つのか、確信がもてない データサイエンスや機械学習は難しそうだと思っている ログ解析において、grepや単純な統計処理より
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く