Twitterに直接画像をツイートできるようになったのは2011年。以来、Twitterを楽しむ上で不可欠な要素になりました。Twitter上には、毎日数百万を超える画像がアップロードされていますが、それぞれのサイズも解像度も異なるため、UI上で各画像を最適な形で表示できるように処理を行うことが課題になっていました。皆さんのタイムライン上の画像は、一貫性があり、より多くのツイートを目にできるようにトリミングされています。今回は、Twitterがどの画像をトリミングし、画像のどの部分を表示するか、どのように決めているのかをご案内します。 以前は、顔認識技術を利用し、画像の中でもっともわかりやすい顔を中心にトリミングを行っていました。これはもっともわかりやすい方法ではありましたが、全ての画像に顔が含まれているわけではないため、ベストな方法とは言えませんでした。また、使用していた顔認識技術では顔
こんにちは、スマートニュースの徳永です。深層学習業界はGANだとか深層強化学習だとかで盛り上がっていますが、今日は淡々と、スパースなニューラルネットワークの話をします。 要約すると ニューラルネットのスパース化によって、精度はほとんど犠牲にせずに、計算効率は3〜5倍程度まで向上できる スパース化にはまだ課題が多く、ニューラルネットの高速化という意味では、次の戦場はたぶんここになる スパースとは、スパース化とは スパースであるとは、値のほとんどが0であることです。例えば、ベクトル$a,b$の内積を計算する際に、$a$のほとんどの要素の値が0であるとしましょう。0になにをかけても0ですから、$a$の値が0でない次元についてのみ、$a_i b_i$の値を計算して足し合わせればよいわけです。このように、内積を計算する際に、どちらかのベクトルがスパースであれば計算が高速化できます。0という値をメモリ
こんにちは,Ryobot (りょぼっと) です. 概要 「メモリネットワーク」は代表的な記憶装置付きニューラルネットワークである. 本稿ではメモリモデル (記憶装置付きニューラルネットワーク) をいくつか概説し,論文 2 紙 (1) Memory Networks, (2) Towards AI-Complete Question Answering の理論的な記述を全文翻訳して補足説明している. 目次 メモリモデルの概説 Memory Networks (MemNN) 1 メモリネットワークの概要 2 基本モデル 3 拡張モデル 4 実験 Towards AI-Complete Question Answering (bAbI task) 1 メモリネットワークの拡張 2 bAbI タスク 3 実験 長文である.ざっくり知るだけなら「メモリモデルの概説」と Memory Networks
ネットワークの重みや各ニューロンがどういう入力の時に発火するのかが、学習していく過程で各時刻可視化されてとても良い教材です。 http://playground.tensorflow.org/ うずまきのデータセットに関して「中間層が1層しかないとうずまき(線形非分離な問題)は解けない」という誤解があるようなので、まずは1層でできるという絵を紹介。なお僕のタイムライン上では id:a2c が僕より先に気付いていたことを名誉のために言及しておきます。 で、じゃあよく言われる「線形非分離な問題が解けない」ってのはどういうことか。それはこんな問題設定。入力に適当な係数を掛けて足し合わせただけでは適切な境界を作ることができません。 こういうケースでは中間層を追加すると、中間層が入力の非線形な組み合わせを担当してくれるおかげで解けなかった問題が解けるようになります。 1つ目のデータセットでは特徴量の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く