login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023002
Sum of 10th powers.
8
0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
OFFSET
0,3
LINKS
Bruno Berselli, A description of the recursive method in Formula lines (second formula): website Matem@ticamente (in Italian).
Eric Weisstein's World of Mathematics, Power Sum.
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - Bruno Berselli, Apr 26 2010
a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - Bruno Berselli, Apr 27 2010
From Bruno Berselli, Aug 23 2011: (Start)
a(n) = -a(-n-1).
G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - Mircea Merca, Jan 25 2014
MAPLE
A023002:= n-> bernoulli(11, n+1)/11; seq(A023002(n), n=0..30); # G. C. Greubel, Jul 21 2021
MATHEMATICA
Table[Sum[k^10, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0, 20]^10] (* Harvey P. Dale, Aug 23 2011 *)
PROG
(Sage) [bernoulli_polynomial(n, 11)/11 for n in range(2, 21)]# Zerinvary Lajos, May 17 2009
(Magma) [&+[n^10: n in [0..m]]: m in [0..19]]; // Bruno Berselli, Aug 23 2011
(PARI) a(n)=(6*x^11+33*x^10+55*x^9-66*x^7+66*x^5-33*x^3+5*x)/66 \\ Charles R Greathouse IV, Aug 23 2011
(PARI) a(n)=sum(i=0, 10, binomial(11, i)*bernfrac(i)*n^(11-i))/11+n^10 \\ Charles R Greathouse IV, Aug 23 2011
(Python)
A023002_list, m = [0], [3628800, -16329600, 30240000, -29635200, 16435440, -5103000, 818520, -55980, 1022, -1, 0 , 0]
for _ in range(20):
for i in range(11):
m[i+1]+= m[i]
A023002_list.append(m[-1])
print(A023002_list) # Chai Wah Wu, Nov 05 2014
CROSSREFS
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Row 10 of array A103438.
Cf. A215083.
Sequence in context: A013958 A294305 A036088 * A279643 A168119 A272672
KEYWORD
nonn,easy
STATUS
approved