2024-06-05

I.GPT-4からAGIへ:OOMを数える (2)

この4年間

私たちは今、基本的人間のように会話できるマシンを手にしている。これが普通に思えるのは、人間適応能力の驚くべき証であり、私たち進歩のペースに慣れてしまったのだ。しかし、ここ数年の進歩を振り返ってみる価値はある。

GPT-2からGPT-4へ

GPT-4までのわずか4年間(!)で、私たちがどれほど進歩たかを思い出してほしい。

GPT-2(2019年)~未就学児:"わあ、もっともらしい文章をいくつかつなげられるようになった"アンデス山脈ユニコーンについての半まとまり物語という、とてもさくらんぼのような例文が生成され、当時は信じられないほど印象的だった。しかGPT-2は、つまずくことなく5まで数えるのがやっとだった。記事を要約するときは、記事からランダムに3つの文章選択するよりもかろうじて上回った。

当時、GPT-2が印象的だった例をいくつか挙げてみよう。左:GPT-2は極めて基本的な読解問題ではまあまあの結果を出している。右:選び抜かれたサンプル(10回試したうちのベスト)では、GPT-2は南北戦争についてある程度関連性のあることを述べた、半ば首尾一貫した段落を書くことができる。

https://situational-awareness.ai/wp-content/uploads/2024/06/gpt2_examples-1024x493.png

当時、GPT-2について人々が印象に残った例をいくつか挙げます。左: GPT-2は極めて基本的な読解問題でまあまあの仕事をする。右: 厳選されたサンプル(10回試したうちのベスト)では、GPT-2は南北戦争について少し関連性のあることを言う、半ば首尾一貫したパラグラフを書くことができる。

AI能力人間の知能を比較するのは難しく、欠陥もあるが、たとえそれが非常に不完全なものであったとしても、ここでその例えを考えることは有益だと思う。GPT-2は、その言語能力と、時折半まとまり段落を生成したり、時折単純な事実質問に正しく答えたりする能力で衝撃を与えた。未就学児にとっては感動的だっただろう。

GPT-3(2020年)~小学生:"ワオ、いくつかの例だけで、簡単な便利なタスクができるんだ。"複数段落一貫性を持たせることができるようになり、文法修正したり、ごく基本的計算ができるようになった。例えば、GPT-3はSEOマーケティング用の簡単コピーを生成することができた。

https://situational-awareness.ai/wp-content/uploads/2024/06/gpt3_examples-1.png

GPT-3について、当時の人々が印象に残った例をいくつか挙げてみよう。上:簡単な指示の後、GPT-3は新しい文の中で作られた単語を使うことができる。左下:GPT-3は豊かなストーリーテリングを行ったり来たりできる。右下:GPT-3は非常に簡単コードを生成できる。

GPT-3はSEOマーケティング用の簡単コピーを生成することができた。上:簡単な指示の後、GPT-3は新しい文章の中で作られた単語を使うことができる。左下:GPT-3は豊かなストーリーテリングを行ったり来たりできる。右下:GPT-3は非常に簡単コードを生成できる。

繰り返しになるが、この比較は不完全であるしかし、GPT-3が人々に感銘を与えたのは、おそらく小学生にとって印象的だったことだろう。基本的な詩を書いたり、より豊かで首尾一貫した物語を語ったり、初歩的なコーディングを始めたり、簡単な指示やデモンストレーションからかなり確実に学習したり、などなど。

GPT-4(2023年)~賢い高校生:「かなり洗練されたコードを書くことができ、デバッグを繰り返し、複雑なテーマについて知的で洗練された文章を書くことができ、難しい高校生競技数学を推論することができ、どんなテストでも大多数の高校生に勝っている。コードから数学フェルミ推定まで、考え、推論することができる。GPT-4は、コードを書く手伝いから草稿の修正まで、今や私の日常業務に役立っている。

https://situational-awareness.ai/wp-content/uploads/2024/06/gpt4_examples-3.png

GPT-4がリリースされた当時、人々がGPT-4に感銘を受けた点をいくつか紹介しよう。上:GPT-4は非常に複雑なコードを書くことができ(中央プロット作成)、非自明数学問題を推論することができる。左下:AP数学問題を解く。右下:かなり複雑なコーディング問題を解いている。GPT-4の能力に関する調査からの興味深い抜粋こちら。

AP試験からSATに至るまで、GPT-4は大多数の高校生よりも良いスコアを出している。

もちろん、GPT-4でもまだ多少ばらつきがある。ある課題では賢い高校生よりはるかに優れているが、別の課題ではまだできないこともある。とはいえ、これらの限界ほとんどは、後で詳しく説明するように、モデルがまだ不自由であることが明らかなことに起因していると私は考えがちだ。たとえモデルがまだ人為的な制約を受けていたとしても、生のインテリジェンスは(ほとんど)そこにある。

https://situational-awareness.ai/wp-content/uploads/2024/06/timeline-1024x354.png

わずか4年間の進歩あなたはこのラインのどこにいるのだろうか?

続き I.GPT-4からAGIへ:OOMを数える (3) https://anond.hatelabo.jp/20240605204704

  • アンホブリング 最後に、定量化するのが最も難しいが、それに劣らず重要な改善のカテゴリーを紹介しよう。 難しい数学の問題を解くように言われたとき、頭に浮かんだことを即座に...

    • データの壁 これらすべての重要な変動要因になりうるものがあります。つまり、より多くのスクレイピング・データでより大きな言語モデルをプリ・トレーニングするという素朴なア...

      • アルゴリズムの効率化 コンピュートへの大規模な投資が注目される一方で、アルゴリズムの進歩も同様に重要な進歩の原動力であると思われる(そして、これまで劇的に過小評価され...

        • OOMを数える どうしてこうなった?ディープラーニングの魔法は、それがただ機能するということであり、あらゆる場面で否定的な意見にもかかわらず、その傾向線は驚くほど一貫して...

          • ディープラーニングのトレンド 過去10年間のディープラーニングの進歩のペースは、まさに驚異的だった。ほんの10年前、ディープラーニング・システムが単純な画像を識別することは...

            • この4年間 私たちは今、基本的に人間のように会話できるマシンを手にしている。これが普通に思えるのは、人間の適応能力の驚くべき証であり、私たちは進歩のペースに慣れてしまっ...

              • X (twitter) で SITUATIONAL AWARENESS: The Decade Ahead https://situational-awareness.ai/ というのが回ってきて非常に示唆に富むものだったので、DeepL (無料版 API経由) で訳してみた。 レオポルド・アッシェ...

              • 2027年までにAGIが実現する可能性は極めて高い。GPT-2からGPT-4までの4年間で、私たちは〜未就学児から〜賢い高校生までの能力を手に入れた。計算能力(~0.5桁またはOOMs/年)、アルゴリズ...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん