タグ

RNNに関するoasis440のブックマーク (4)

  • LSTMを超える期待の新星、QRNN - Qiita

    RNN「これってもしかして」 CNN「わたしたちのモデルが・・・」 「「入れ替わってる~~~!?」」 というわけでQRNN、QUASI-RECURRENT NEURAL NETWORKSとは、RNNの機構をCNNで「疑似的(QUASI)に」実装するというモデルです。これにより、既存のRNN(というかLSTM)が抱えていたいくつかの問題の解決を試みています。 元論文は以下となります。 QUASI-RECURRENT NEURAL NETWORKS 作者によるブログ 作者の方のブログにChainerのサンプルコードがあったので、それを元にTensorFlowで実装してみました。早く動かしたい!という方はこちらを見てみてください。 icoxfog417/tensorflow_qrnn (Starを頂ければ励みになります m(_ _)m) 記事では、この研究のモチベーションとそのアプローチについ

    LSTMを超える期待の新星、QRNN - Qiita
  • LSTMネットワークの概要 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Christopher Olah氏のブログ記事 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ の翻訳です。 翻訳の誤りなどあればご指摘お待ちしております。 ##リカレントニューラルネットワーク 人間は毎秒ゼロから思考を開始することはありません。このエッセイを読んでいる間、あなたは前の単語の理解に基づいて、各単語を理解します。すべてを捨てて、またゼロから思考を開始してはいません。あなたの思考は持続性を持っています。 従来のニューラルネットワークは、これを行うことができま

    LSTMネットワークの概要 - Qiita
  • 基本的なRecurrent Neural Networkモデルを実装してみた - Qiita

    Recurrent Neural Network(再帰型ニューラルネット)に関心はあるが,なかなかコード作成に手がつかない,このようなケースが多くないだろうか?理由はいくつかあるが,私の場合は次のようなものが思い当たる. 単純にネットワークの構成が複雑.MLP(Multi-layer Perceptron)から入門してCNN(Convolutional-NN)に進むまでは,特殊なLayerがあるにせよ,信号の流れは順方向のみであった.(誤差の計算は除く.) MLPやCNNにおいては分かりやすい例題,(Deep Learningの’Hello World'と称される)"MNIST" があったが,そのような標準的な(スタンダードな)例題がRNNにはない. 因みにTheanoのDeep LearningやTensorFlowのTutorialは,言語モデルを扱ったものである.言語モデルに精通され

    基本的なRecurrent Neural Networkモデルを実装してみた - Qiita
    oasis440
    oasis440 2017/02/03
  • RNNで来月の航空会社の乗客数を予測する:TFLearnでLSTMからGRUまで実装しよう - DeepAge

    Recurrent Neural Network 時系列データを扱うRNN Long Short-Term Memory Networks 来月の航空会社の乗客数を予測する TFLearnと必要なライブラリのインストール まずは乗客数のデータを可視化してみる LSTMネットワークを構築しよう TensorBoardで誤差を可視化する 時系列分析での予測精度の指標 RMSE(Root Mean Squared Error) RMSLE(Root Mean Squared Logarithmic Error) MAE(Mean Absolute Error) MAPE(Mean Absolute Percentage Error) 結果を可視化する Window幅を変えてみる GRU(Gated Recurrent Unit)を使う GRUの層を増やしてみる LSTM学習のコツ まとめ 参考

    RNNで来月の航空会社の乗客数を予測する:TFLearnでLSTMからGRUまで実装しよう - DeepAge
  • 1