本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
リテラシーレベルモデルカリキュラム対応教材 利用条件とアンケート 東京大学と記載のあるスライド教材の利用についてはこちら(一部スライドは冒頭の利用条件をご参照ください)。 東京大学と記載のある講義動画の利用条件は、各動画の冒頭をご参照ください。 滋賀大学と記載のある教材の利用条件はCC BY-NC-SAです。 九州大学と記載のある教材の利用条件はCC BYです。 筑波大学と記載のある教材の利用条件についてはこちら 北海道医療大学と記載のある教材の利用条件はCC BYです。 東京都市大学と記載のある教材の利用条件についてはこちら 教材のアンケートはこちら モデルカリキュラムと対応する講義動画・スライド 1. 社会におけるデータ・AI利活用 2. データリテラシー 3. データ・AI利活用における留意事項 4. オプション 1. 社会におけるデータ・AI利活用 1-1. 社会で起きている変化
真野 智之 (Tomoyuki Mano) <tomoyukimano@gmail.com> version 1.0, 2020-06-19
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く