タグ

アルゴリズムに関するyotenaのブックマーク (5)

  • Perceptron - [物理のかぎしっぽ]

    の学習モデル † 最近傍決定則やk-最近傍決定則 によりパターンを識別する事ができるようになりました. これらの方法は大変シンプルな考え方でありながら,サンプルが充実していれば かなりの精度で識別が可能だと考えられます.しかし問題点として, サンプル全てを保持しておかなければならない事,次元数が増え,サンプル数が増えると 計算量が膨大になる事が挙げられます. ここで最近傍決定則のように,パターンに最も距離の近いクラスタを選ぶという作業は 見方を変えると,異なるクラスタのサンプル間において, 垂直二等分線を考え,領域を分けるという事になります. ということは,この境界線を知ることができれば, サンプルのデータは不要と考えることができ,Perceptronはこの境界線を 学習によって得ることができます.ただし,Perceptronは上の図のような垂直二等分線を得る訳ではなく, 学習であたえ

  • アルゴリズムとデータ構造

    書はコンピュータ サイエンスにおけるアルゴリズムとデータ構造を解説します。「プログラム書けるよ」と言う人達でも意外とアルゴリズムやデータ構造に関する知識を持っていません。 自身のプログラミング スキルを向上させたり隣のプログラマとちょっと差をつけるために是非とも身に着けておきたい知識です。 アルゴリズムとデータ構造は世の中にたくさんあります。書では適当な書籍で学べる基的なものを紹介します。データ構造の章では主に線形のデータ構造とグラフデータ構造を解説します。アルゴリズムの章では主に探索アルゴリズムと整列アルゴリズムを解説します。

  • tf-idf - Wikipedia

    情報検索の分野において、tf–idf (または、 TF*IDF、TFIDF、TF–IDF、Tf–idf)は、term frequency–inverse document frequencyの略であり、コーパスや収集された文書群において、ある単語がいかに重要なのかを反映させることを意図した統計量(数値)である[1]。また、tf-idfは情報検索や、テキストマイニング、ユーザーモデリング(英語版)における重み係数(英語版)にもよく用いられる。ある単語のtf-idfの値は文書内におけるその単語の出現回数に比例して増加し、また、その単語を含むコーパス内の文書数によってその増加が相殺される。この性質は、一般にいくつかの単語はより出現しやすいという事実をうまく調整することに役立っている。今日、tf-idfはもっとも有名な語の重みづけ(term-weighting)手法である。2015年に行われた研究

    yotena
    yotena 2009/05/20
    特徴語抽出のアルゴリズム
  • あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな

    あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。

  • 著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報

    “アルゴリズム”は、もっとも非人間的なものの代表だともいえる。ソーシャルメディアにとって、そのアルゴリズムが不可欠だというのは、実に皮肉めいている。 僕はこの間、グーグルがどうやってユーザーデータを集めているかについて書いた記事を掲載した(前編、後編)。今回は、著名なソーシャルメディアサイトが、ユーザーデータを活用する上でどのようにアルゴリズムを用いているのか、白日の下にさらそう。 ソーシャルメディアを成り立たせているのは人間の力だが、ユーザーが入力したデータを利用できる状態にする仕組みは、アルゴリズムによって作られている。現在活動している無数のソーシャルメディアサイトで実証済みのことだが、ユーザーの関与とアルゴリズムによる処理ルールの上手いバランスを見出すことは、とても難しくなりがちだ。これから紹介するアルゴリズムは、悪意のないユーザーと結びついて初めてうまくいくものだ。 人気ソーシャル

    著名ソーシャルメディアが使っているアルゴリズムを大公開! | Moz - SEOとインバウンドマーケティングの実践情報
  • 1