タグ

dataに関するWindymeltのブックマーク (1)

  • 1100万行・32GB超の巨大CSVファイルの基本統計量を4GBメモリマシンで算出する - Qiita

    はじめに この記事は,Kaggle Advent Calendar 2022第6日目の記事になります。 記事では、 32GB超のCSVデータの基統計量を、小規模マシンでも省メモリかつ高速に計算するテクニック について解説します。 Kaggleコンペに限らず、 マシンスペックが低いため、大きなデータセットを満足に処理できず困っている 毎回行うファイル読み込みが遅いので、もっと高速化したい ⚡ といった悩みや課題を抱えている方の参考になれば幸いです。 モチベーション データ分析業務やKaggle等のコンペティションで初めてのデータセットを扱う場合、いきなり機械学習アルゴリズムを行うことはまず無く、最初にデータ観察を行うのが一般的です。 テーブルデータであれば、各カラムの基統計量(最小値、最大値、平均、分散、四分位数)などを計算・可視化し、データクレンジングの要否や特徴量設計の方針などを検

    1100万行・32GB超の巨大CSVファイルの基本統計量を4GBメモリマシンで算出する - Qiita
    Windymelt
    Windymelt 2023/06/06
    parquet形式だ。いいよね。pyarrowはdaskってやつから呼び出す感じなんだろうか。 / 自分だったらPython使わずに直接Sparkとかで処理しちゃうだろうな
  • 1