Help us understand the problem. What is going on with this article?
トップページ ここは、Programming Place Plus の、アルゴリズムとデータ構造編のトップページです。 各種アルゴリズムとデータ構造に関して、詳細な解説や、C言語を使った具体的な実装例があります(C言語についての情報は、C言語編を参照してください)。 データ構造 整列アルゴリズム 探索アルゴリズム その他のアルゴリズム APPENDIX リンク集 参考書籍
↓改訂版 Ver1.3はこちらから↓ shindannin.hatenadiary.com 2016年8月18日 Ver. 1.2 内容を更新しました。 4.遷移確率と温度の部分を全般的に修正 この記事は、Competitive Programming Advent Calendar Div2012の24日目の記事です。 http://partake.in/events/3fcea6d7-0bab-4597-82db-86439aadb1b9 素晴らしい企画をしていただいたtanzakuさん(https://twitter.com/_tanzaku_)、今年もどうもありがとうございます! 焼きなまし法そのものの解説は少しだけにして、焼きなまし法の使い方のコツをメインに書こうと思います。 焼きなまし法の概要 2015年5月26日 内容を更新しました。 最適化(=最大値か最小値を求める)の手法
大小の関係が決められたデータを小さい順や大きい順に並び替える作業はソートと呼ばれ、コンピュータには欠かせないプログラムです。そのため、ソートをより早く・確実に・効率良く実行できるように、さまざまなアルゴリズムが考案されてきました。そんなコンピュータの発展にかかせない役割を果たしてきたソートアルゴリズムをビジュアル化することで直感的に理解できるのが「SORTING」です。 SORTING http://sorting.at/ これがSORTINGのサイトページです。ソートアルゴリズムを選択してページ下の「PLAY」ボタンをクリックすると、そのソートアルゴリズムを使ってボールが並び替えられます。 たとえばアルゴリズム「クイックソート」でランダムに並んだ状態の大きさの異なるボールを左から小さいもの順に並び替えるとこんな感じです。 選べるソートアルゴリズムは、クイックソート・ヒープソート・スムース
※この内容は個人的な考察なので、間違っている箇所もあると思います。そういう部分を見つけた際はぜひ教えて下さい。 RDBMSの検索を早くするためにIndexって使いますよね。例えばこんなテーブル CREATE TABLE user ( id INT UNSIGNED NOT NULL, name VARCHAR(255) NOT NULL, UNIQUE INDEX (id) ); idカラムにIndexを張っています。これはidでの検索を高速にするためです。ここでidカラムにIndexが貼っていない場合と比べると検索時間が大幅に変わってきてしまいます(特にレコードが多くなった時) ではなぜIndexを貼ると検索が早くなるんでしょう?? Indexとはその名の通り索引を意味します。特定のカラムの索引を作成しておくことで検索を高速化します。 (本の最後によみがな順で単語が並べられたりしています
脳と現状のコンピュータは、計算モデル、アーキテクチャ、 アルゴリズムなどいろいろな観点からみて違いがあります。 はたしてコンピュータの上で脳と同じ機能は実現できるのでしょうか。 実現を難しくする要因として何が考えられるでしょうか。 ◆計算モデルの違い 計算する機械を数学的に抽象化したものを計算モデルと呼びます。 チューリングマシンは計算モデルの1つです。 チューリングマシンとは数学的に異なる計算モデルとしては、 例えば非決定性チューリングマシン、 (理想的な)アナログコンピュータ、量子チューリングマシン (量子コンピュータのモデル)があります。 これらはチューリングマシンよりも強力だったり速かったりします。 さて、「脳の計算モデル」はチューリングマシンと等価でしょうか、 それともより強力だったり速かったりするのでしょうか。 非決定性チューリングマシンは並列度が無限の計算機です。 脳は超並列
下に表示されている文字を入力してください 申し訳ありませんが、お客様がロボットでないことを確認させていただく必要があります。最良のかたちでアクセスしていただくために、お使いのブラウザがクッキーを受け入れていることをご確認ください。
いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 今後紹介していくアルゴリズムについて お待たせしました! 「最強最速アルゴリズマー養成講座」という連載タイトルのとおり、今回の連載からいよいよ具体的なアルゴリズムの紹介に入っていきたいと思います。 しかし、それを読んでいただく前に、1つ注意してもらいたいことがあります。連載第3回でもお伝えしたように、「問題を、既存の適当なアルゴリズムに当てはめる」という考え方は、非常に危険である、ということです。 筆者の経験上、TopCoderでRedCoder以上を目指すのであれば、回答時間短縮のために、いままでのパターンを利用するのも方法の1つなのですが、本連載では
数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。 もしあなたが知ってしまったなら――病みつきになる動的計画法の集中講義 前回の『アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった』で動的計画法とメモ化再帰を説明しましたが、前回の説明ではまだ勘所をつかめていない方がほとんどでしょう。そこで、これらを完全にマスターするため、今回はもう1つ具体例を挙げながら練習したいと思います。 どういった問題を採用するかは悩みましたが、非常に有名な「ナップサック問題」を取り上げて説明します。 ナップサック問題とは以下のような問題です。 幾つかの品物があり、この品物にはそれぞ
アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった:最強最速アルゴリズマー養成講座(5/5 ページ) 関連記事 トップクラスだけが知る「このアルゴリズムがすごい」――「探索」基礎最速マスター プログラミングにおける重要な概念である「探索」を最速でマスターするために、今回は少し応用となる探索手法などを紹介しながら、その実践力を育成します。問題をグラフとして表現し、効率よく探索する方法をぜひ日常に生かしてみましょう。 知れば天国、知らねば地獄――「探索」虎の巻 いよいよ今回から、具体的なアルゴリズムの紹介に入っていきます。今回は、プログラミングにおける重要な概念である「探索」について考えます。グラフに変換し、探索する、という流れを知るとともに、そのグラフを効率よく探索する方法について紹介します。 細かすぎて伝わりにくいTopCoderのコーディングスキル向上マジック 競技プ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く