Site unavailable. If you're the owner, email us on support@ghost.org
はじめに 明けましておめでとうございます。今年もよろしくお願いします。 たまたま昨年末に、Facebookの謎な対応により始めてしまったはてなブログ、「次書くかどうかわからない」とは書きましたが、次も書いてみることにしました。 なぜそう思ったか、理由は2つあります。1つは、日頃はTwitterかFacebookばっかりやっている自分ですが、そっちだとどうしても書いたものが流れてしまって、あとから自分で見返したくても見返せないこと(特にFacebook。TwitterはTwilog使ってるのでまだマシ)。 もう1つは、とある本について、どこかに書き留めておきたいなぁ、と思ったこと。 その本の名前は、『仕事ではじめる機械学習』です。 仕事ではじめる機械学習 作者: 有賀康顕,中山心太,西林孝出版社/メーカー: オライリージャパン発売日: 2018/01/16メディア: 単行本(ソフトカバー)こ
Transcript Deep Learning以外の⼿法で ユニクロコンに参戦してみた @mamas16k Kaggle Tokyo Meetup #3 Outline 0.はじめに 1.ユニクロコンペとは? 2.結果 3.⼿法 4.上位の⼈の⼿法まとめ 0.はじめに • Twitter ID: mamas16k • 物理系の学部2年⽣ • 機械学習暦・プログラミング暦共に1年ぐらいの初⼼者 • データ分析系の企業でインターンしてました • ユニクロコンは初の機械学習コンペ 今回のKaggle Meetupの初⼼者枠なので、あまり真に受けずにた くさんマサカリを投げてくれると有り難いです>< 1.ユニクロコンペとは? • Kaggleではなく、オプトDSLで2017年4⽉ ~ 7⽉に開催 • スポンサー:Fast Retailing (ユニクロの親会社) • 服、靴下、ベルト等の画像を2
AlphaGo Zeroが自己学習のみで過去最強になったというニュースが出たのでその元論文を読み、要約をしました。 まず感想を述べると、過去数千年にわたって蓄積してきた知識をAIが数時間で発見することに対する気持ち良さがありました。人間などクソ食らえと思っておりますので、こう言うニュースはとてもスッキリします。そして人間の発見していない打ち筋の発見にも感動しました。これこそがAIの真髄だと信じています。人間が見えていないものをAIが見つける、僕もいつかそんなことをしてみたいと思いながら生きています。 あともう一つ重要だと思ったのは、とてもネットワーク構造および学習過程が簡素化されたことです。マシンパワーも過去に比べて非常に少なく済み、個人でもすぐに再現実験ができそうなくらいです。AIが強くなることと、構造および学習のsimplerが同時に達成できていることが本質的だと思います。 一応、下記
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ディープラーニングは特定分野で非常に高い精度が出せることもあり、その応用範囲はどんどん広がっています。 しかし、そんなディープラーニングにも弱点はあります。その中でも大きい問題点が、「何を根拠に判断しているかよくわからない」ということです。 ディープラーニングは、学習の過程でデータ内の特徴それ自体を学習するのが得意という特性があります。これにより「人が特徴を抽出する必要がない」と言われたりもしますが、逆に言えばどんな特徴を抽出するかはネットワーク任せということです。抽出された特徴はその名の通りディープなネットワークの中の重みに潜在してお
By darkday AI(人工知能)が大きな話題となっているコンピューターサイエンスの世界で、その技術を支えているのが「ディープラーニング」です。一方、コンピューターを使った「機械学習」という言葉を耳にすることも多いものですが、実はその違いがよくわからない人も多いはず。そんな両者の違いを、数学的計算ソフトウェア「MATLAB」の開発元であるMathWorksが簡単に解説しています。 Introduction to Deep Learning: Machine Learning vs Deep Learning - YouTube 機械学習もディープラーニングも、学習モデルを提供してデータを分類することに使われる技術です。その働きを解説するのによく用いられるのが、犬と猫の画像を分類するという例。この画像の場合、ほぼ全ての人が左が犬、右が猫と答えるはず。 しかし、別の画像を持ってきた時、それ
My mother began to lose her hearing while I was away at college. I would return home to share what I’d learned, and she would lean in to hear. Soon it became difficult for her to hold a conversation if more than one person spoke at a time. Now, even with a hearing aid, she struggles to distinguish the sounds of each voice. When my family visits for dinner, she still pleads with us to speak in turn
by Sony An open source software to make research, development and implementation of neural network more efficient. Get Started Features Write less do more Neural Network Libraries allows you to define a computation graph (neural network) intuitively with less amount of code. Dynamic computation graph support Dynamic computation graph used enables flexible runtime network construction. The Library
この記事は2年前の以下の記事のアップデートです。 前回はとりあえずデータサイエンティストというかデータ分析職一般としてのスキル要件として、「みどりぼん程度の統計学の知識」「はじパタ程度の機械学習の知識」「RかPythonでコードが組める」「SQLが書ける」という4点を挙げたのでした。 で、2年経ったらいよいよ統計分析メインのデータサイエンティスト(本物:及びその他の統計分析職)vs. 機械学習システム実装メインの機械学習エンジニアというキャリアの分岐が如実になってきた上に、各方面で技術革新・普及が進んで来たので、上記の過去記事のスキル要件のままでは対応できない状況になってきたように見受けられます。 そこで、今回の記事では「データサイエンティスト」*1「機械学習エンジニア」のそれぞれについて、現段階で僕が個人的に考える「最低限のスキル要件」をさっくり書いてみようかと思います。最初にそれらを書
ドワンゴがディープラーニングを用いたアニメの中割り実験の結果を公開しました。原画を直接中割りするまでには至らなかったものの、動画の枚数を増やすことには部分的に成功。スローモーション演出などへの利用に可能性があるとしています。 YouTubeで公開された動画 同手法は、早稲田大学の研究チームが2016年に提案したラフスケッチの自動線画化手法(関連記事)を出発点とし、中割りができるよう変更を加えたもの。アニメ「アイドル事変」の製作委員会やMAGES.協力の下、実際の動画とセルのデータを使用し、実験により自動生成された映像はYouTubeに投稿、実験結果をまとめた論文はコーネル大学図書館が運営する「arXiv(アーカイヴ)」上で公開されています。 実験に用いられたカット(画像はarXivより) 「中割り」とは原画と原画の間を補完する動きを描いた絵のこと。「動画」は「中割り+原画をトレースした絵」
ディープラーニング実践入門 ~ Kerasライブラリで画像認識をはじめよう! ディープラーニング(深層学習)に興味あるけど「なかなか時間がなくて」という方のために、コードを動かしながら、さくっと試して感触をつかんでもらえるように、解説します。 はじめまして。宮本優一と申します。 最近なにかと話題の多いディープラーニング(深層学習、deep learning)。エンジニアHubの読者の方でも、興味ある人は多いのではないでしょうか。 しかし、ディープラーニングについて周りのエンジニアに聞いてみると、 「なんか難しそう」 「なかなか時間がなくて、どこから始めれば良いかも分からない」 「一回試してみたんだけど、初心者向けチュートリアル(MNISTなど)を動かして挫折しちゃったんだよね」 という声が聞こえてきます。 そこで! この記事では、そうした方を対象に、ディープラーニングをさくっと試して感触を
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? オンライン講座のUdacityが提供する自動運転エンジニアコースのTerm1を修了したので,その感想を書こうと思います. Udacityとは UdacityとはCourseraやedX等のオンライン講座MOOCの一つであり,自動運転エンジニアコース,AIコース,フルスタックエンジニアコースなど様々なコースがあります.他のMOOCとの違いは,Coursera等はどちらかといえば知識ベースであるのに対し,Udacityはプロジェクトベースであるという点です.また自動運転コースの講義はMercedes-Benz等からも提供されており,最先端の
教育言語として Pythonは「同じインデントレベルの文は同じ塊」というルールを採用しており、見掛け上のPythonプログラムの最大の特徴となっています。 Python作者のGuido van Rossum氏(オランダ人でアムステルダム大学卒)はPythonを開発する以前に、オランダで教育向けの「ABC言語」の開発に関わっており、Python自体はRAD(迅速なアプリケーション開発)がメインで教育用を念頭に開発してはいなかったものの、ルーツとなったABC言語では文法に関してさまざまな研究が行われ、インデントを使うのが初心者にとってもっとも間違いにくいブロックの表現として採用していたのです。(Donald Knuth氏が推進していた。) Rubyist のための他言語探訪 【第 1 回】 Python Pythonがプログラミングの学習に向いているたった一つの理由 From ABC to P
年末年始はこの2冊を読んでいた。 『はじめての深層学習プログラミング』清水亮 『ゼロからつくるDeep Learning』斎藤康毅 結論から言うと、いま、人工知能やディープラーニングに興味があるひとは、2冊とも必読ではないかと思った。 アプローチが完全に対称的なので、両方読んだら、理論と雰囲気について、見通しがつくようになったのがとてもよかった。 『ゼロからつくるDeep Learning』は、ていねいに書かれたオーソドックスな入門書だ。人工知能開発によく使われる言語・Pythonの基本や数値計算ライブラリの使い方からはじまり、ニューラルネットワーク、ディープラーニング、畳み込みときて、最後に画像認識を解説する。随所に適切な例題やサンプルコードを交えて、理論と実践をバランスよく説明している。 対して、『はじめての深層学習プログラミング』は、まったく真逆のアプローチだ。なんと、理論の解説など
データサイエンティストの中村です。VASILYではファッションに特化した画像解析エンジンを開発しています。本記事では、スナップ写真からファッションアイテムを検出するシステムを紹介したいと思います。 概要 このシステムの入力はスナップ写真です。スナップ写真が入力されたとき、システムは以下のタスクを解きます。 写真中からファッションアイテムに該当する領域を検出する 検出したファッションアイテムのカテゴリを予測する 検出したファッションアイテムに似ているアイテムをDBから検索する 各タスクを解く方法は様々ありますが、弊社のシステムでは2種類のネットワークを使ってこれを達成しています。 ファッションアイテムの検出とカテゴリ予測 検出は画像認識の基本的なタスクで盛んに研究されていて様々な手法が提案されていますが、今回はSingle Shot MultiBox Detector (SSD)*1 と呼ば
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く