タグ

timeseqとmodelに関するs-fengのブックマーク (3)

  • [R] fb Prophet の解剖で学ぶベイズ時系列モデリング - ill-identified diary

    初めに prophet のモデルの説明 ハリボテの R言語 なぜベイズ推定する必要があるのか 結論 補足: バージョン 0.3 で追加された機能について 参考文献 初めに昨年, KFAS, bsts と, いくつか R の時系列モデリングパッケージを紹介記事を書いた. FaceBook によって開発されたという prophet パッケージも紹介したかったところだが, 日語での説明は既に公開されている hoxo_m 氏のものが網羅的であり, 使い方の解説としてはこれ以上やることがほぼないと言っていい. Prophet入門【R編】Facebookの時系列予測ツール from hoxo_m Prophet入門【理論編】Facebookの時系列予測ツール from hoxo_m あとはあるとすれば紹介論文やヘルプの全訳くらいだが, そんな面倒 (かつ退屈) なことはしたくない. そこで, pro

    [R] fb Prophet の解剖で学ぶベイズ時系列モデリング - ill-identified diary
  • Pythonによる状態空間モデル | Logics of Blue

    最終更新:2017年06月06日 Pythonを用いた、状態空間モデルの実装方法について説明します。 なお、正規線形状態空間モデル(動的線形モデル)のみをここでは扱います。 Pythonを使えば、カルマンフィルタや最尤法によるパラメタ推定を短いコードで簡潔に実装することができます。 なお、この記事ではOSはWindowsPythonは『Python 3.6.0 :: Anaconda custom (64-bit)』を使用して、JupyterNotebook上で計算を実行しました。 JupyterNotebookの出力はリンク先を参照してください。 目次 状態空間モデルとPython時系列分析 データの読み込み ローカルレベルモデルの推定 ローカル線形トレンドモデルの推定 季節変動の取り込み 推定するパラメタの数を減らす モデルの比較と将来予測 1.状態空間モデルとPython時系列分析

  • 「状態空間時系列分析入門」をRで再現する

    Commandeur & Koopman「状態空間時系列分析入門」をRで再現する 仕事の都合で仕方なく状態空間モデルについて勉強していたのだけれど(なぜ私がこんな目に)、仕事で使うためには自分で計算できるようにならなければならない。 参考にしているCommandeur & Koopman 「状態空間時系列分析入門」(以下「CK」)の著者らは、すべての事例についてデータとプログラムを公開している。ありがたいことであります。しかし、ssfpackという耳慣れないソフトを使わなければならない。わざわざ新しいソフトの使い方を覚えるのは大変に面倒だ。できれば普段使っているソフトで済ませたい。 というわけで、勉強かたがた、CKに出てくる計算例を片っ端から R で再現してみた。汗と涙の甲斐あって、すべての章についていちおう再現できたので、ここに載せておくことにする。 もくじ: Rプログラム紹介 全体

    「状態空間時系列分析入門」をRで再現する
  • 1