タグ

数学に関するwushiのブックマーク (30)

  • 「円周率=4」を証明してみせましょう。“3.14…”を覆す新理論(?)に驚愕する声多数! 理数系学生「反論思いつかなくて草」

    円周率を100桁近く記憶している人にはガチ悲報。円周率(π:パイ)は4であることが証明されてしまいました。何かがおかしいことはわかるけど、どうおかしいのか明確な反論ができないヘリクツ証明にたくさんのコメントが集まっています。 半径が2で、中心角が直角の扇形を考えます。弧の長さは「2×(半径)×π(円周率)÷4」、半径は2なので、弧の長さはπ(円周率)になります。 次に扇形を囲む、辺の長さが2の正方形を考えます。弧の上に点を取り、正方形の辺から弧に向かい直角に降ろした線を考えます。線の総和は、正方形の2辺と同じなので4になります。 弧の上に取られる点を増やしていきます。 点の数をどれだけ増やしても、線分の長さは常に4になります。 では、点の数を無限大にします。そうすると、弧の長さと線分の長さは等しくなります。ゆえに円周率は4。 この詐欺のような証明にコメント欄は大紛糾。「一般的な極限と数学

    「円周率=4」を証明してみせましょう。“3.14…”を覆す新理論(?)に驚愕する声多数! 理数系学生「反論思いつかなくて草」
    wushi
    wushi 2018/11/14
  • モンティ・ホール問題を分かりやすく解説します – 絶対納得して欲しい! | 数学の面白いこと・役に立つことをまとめたサイト

    挑戦者の前に三つのドアが現れます。下の画像のようなドアです。 この三つのドアの向こう側には、車が一台とヤギは二頭のどれかがあります。ただし、どのドアの向こうに車もしくはヤギがあるかは挑戦者には分かりません。司会者のホール氏は知っています。 挑戦者はこのドアの中から一つを選んで、それが車の場合にだけその車を手に入れることができます。 まず、挑戦者は何の情報も与えられずに、一つのドアを選びます。 ここで終わりではありません。挑戦者がドアを選んだら、司会のホール氏は残り二つのドアからヤギのドア(ハズレ)を選んで開けてみせます。※必ず、ハズレを開けます。 これでハズレのドアは一つ開かれたので、車のドア(アタリ)は今挑戦者が選んでいるドアか、残りの一つのドアということになります。上の画像でいうと、一番左か真ん中のドアが当たりです。 ここで、ホール氏は挑戦者に、 「今選んでいるドアをもう一つのドアに変

  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • 大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト

    高校生のほけきよ少年にとって、得られる大学以上の物理や数学の情報はwebサイトだけでした。 物理や数学の専門書って高いんですよね。あと、大きな屋じゃないと取り扱っていない。 今ではamazonでいろいろな書籍が手に入るようになりましたが、高いしどんな内容がかかれているかは分からないので、買うのもためらわれます。 そこで今日は 好奇心溢れる高校生 お金はない、単位が危ない、やる気に溢れた大学生 社会人になってから物理や数学趣味で始めたい人 たちのために、無料で大学以上の内容を学べるサイト/サービスを紹介します! 1. 物理のかぎしっぽ 2. EMANの物理学 3. MITの物理学講義(Youtube) 4. 現代数学観光ツアー 物理のための解析学探訪 5. 数学:物理を学び楽しむために 6. 高校数学の美しい物語 まとめ ※ここでいう数学は「物理学のための数学」の範疇を超えません。 1.

    大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト
    wushi
    wushi 2017/07/17
  • 三角関数を用いた『長さが測れるテープ台』を小学4年生が作成「これはすごい、特許とれそう」「先生の評価が低いのが残念」

    mic @microom このセロテープ台すごいw 下の延長というか補助定規を引き出して斜めにテープを引っ張りつつ、三角関数で距離を測れると言える息子さん"持ってる"。引き出したテープを頑張って地面に這わせるのではないのよ。 twitter.com/ceruleanbluehu… 2017-06-24 11:27:50 akane @ceruleanbluehue でもこのテープ台、息子は三角関数使ったら斜めの長さが分かるから、斜めにした時のテープの長さがわかるんだよ!と大興奮で作ったにも関わらず、担任の先生にも他の子にも「ただのテープ台でしょ」、と言われて落ち込んで帰ってきた悲しい思い出の品。 twitter.com/ceruleanbluehu… 2017-06-22 16:24:03

    三角関数を用いた『長さが測れるテープ台』を小学4年生が作成「これはすごい、特許とれそう」「先生の評価が低いのが残念」
  • 結城浩の挑戦状を見て思ったこと - 0x90

    このブログは技術系のことばっかり書き留めていたんだけど、たまにはアカデミックなことも書いてみようかと思って久々に筆を取りました。 というのも、この記事 motcho.hateblo.jp を見て、気になったことがあったからです。ブコメにも書いたけれど、100字は狭すぎます。 なお先に行っておきますが、別にぼくはこの著者の方の感動を腐そうとかそういう根性ではなく、まあこういう話もあるよ程度の感じで適当にこの記事を書いています。あと、ぼくは純粋数学のバックグラウンドがあるわけではなく多少理論物理学をやっている程度なので、物理屋から見た数学、的な色が強いかもしれません。 それでは見ていきましょう。なお、簡便のため以下では特に を考えます。 数学と定義 上の記事を見て一番に思ったことはブコメに書きましたが、『定義されていないから解析接続したと思って黄金比でもいいのでは』ということです。 ここでまず

  • 【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる

    こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式

    【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる
  • 中学数学で一番複雑な公式,「解の公式」を図形的に捉えてみる

    みなさん,中学校の時に,「2次方程式の解の公式」というのを習わなかったでしょうか? そう,こんなやつです. 多分ですが,中学校で習う公式の中では一番複雑だと思います. 加えて,中学生には証明が難しくて,多くの中学では先生が「とりあえずこれ暗記で.」みたいな雑な教え方しかしていないというのも現状なよう 確かに,式変形の過程を終わせることはちょっと中学生には退屈だし難しいと思います. 今回は,それを図形的解釈を含めて確認してみましょう. 例題を解いてみる さて,その前に解の公式ってなんだっけ?という人も多いと思うので,例題を出してみます. 例えば, の解を求めるという問題があったとします. もちろん,たすきがけ等,他の解法を使ったほうが楽ですが,後の説明につなげるためにあえてこの例題を解の公式で解いてみます id:htnma108 さんのブコメに返答しておくと,たすき掛けで解けない2次方程式は

    中学数学で一番複雑な公式,「解の公式」を図形的に捉えてみる
    wushi
    wushi 2017/04/16
    『「解の公式ってなんで成り立つの?」と言われると,中学生はともかく大学生でも結構答えられない人は多いんです』ここが一番の衝撃だった
  • まさかのNP困難?「九九って36種類しか数がないの不思議だよな」から始まる数学談義

    maki @maki_glenscape $ python3 -c 'print(len(set([x * y for x in range(1, 10) for y in range(1, 10)])))' 36 へぇ、ほんとだ twitter.com/motcho_tw/stat… 2017-04-06 01:53:53

    まさかのNP困難?「九九って36種類しか数がないの不思議だよな」から始まる数学談義
  • 【Edward】MCMCの数学的基礎からStochastic Gradient Langevin Dynamicsの実装まで - Gunosyデータ分析ブログ

    こんにちは。初めまして。 データ分析部新入りのmathetake(@mathetake)と申します。 先日個人ブログでこんなエントリを書いた人です: mathetake.hatenablog.com そんなこんなでTwitter就活芸人(?)として活動(?)してましたが、これからは真面目に頑張っていこうと思います。 今日はみんな大好きベイズモデリングおいて、事後分布推定に欠かせないアルゴリズム(群)の一つである*1 マルコフ連鎖モンテカルロ法(Markov chain Monte Carlo) 通称MCMCに関するエントリです。より具体的に、 MCMCの意義(§1.)から始め、マルコフ連鎖の数学的な基礎(§2.,3.,4.)、MCMCの代表的なアルゴリズムであるMetropolis-Hastings法(§5.)、その例の1つである*2Langevin Dynamics(§6.)、そして(僕

    【Edward】MCMCの数学的基礎からStochastic Gradient Langevin Dynamicsの実装まで - Gunosyデータ分析ブログ
  • ネイピア数eの定義がなぜあの形か,先生は説明をしてくれなかった

    まぁたしかにそうなんですが,定義の背景には,そう定義すれば都合の良い理由があるはずなんですよね. ということで,この\(e\)の定義について今日は見ていきましょう. eがよく出てくる所 さて,eがよく出てくるところってどこでしょうか? そうです,微分ですね. 微分方程式を解いていると,必ずと行っていいほど\(e\)が出てきます. しかも,理系の方ならおなじみ,\(e\)には,指数関数\(e^x\)を微分した結果は,\(e^x\)とという素晴らしい性質があります. また,底を\(e\)とする対数関数\(log(x)\)の微分は\(\frac{1}{x}\)ととてもきれいになりますね. さて,これって,当にたまたま\(e^x\)や\(log(x)\)を微分した結果こうなったのでしょうか? いや,きれいになるように自然対数\(e\)を定義したと考えるほうが自然じゃないでしょうか? ということで

    ネイピア数eの定義がなぜあの形か,先生は説明をしてくれなかった
    wushi
    wushi 2016/12/24
  • クリエイティブコーディングのための数学 JavaScript 入門 [三角関数と行列]

    2. クリエイティブコーディングで数学? • パーティクルを自由に飛ばしたい →速度の計算、ベクトル、移動量計算 • 色を自由に変化させたい →周期角度の計算、濃淡の連続的変化 • 大量のオブジェクトにダンスしてもらいたい →時間制御(タイムラプス)、高度な変形計算 • ジェネレイティブアートを作りたい →数学アルゴリズムの理解 3. 目標 ① 三角関数と行列で表現に活用できる部分を知る • 全部は知らんでも何とかなるわよ ② 数学式→JavaScript へ移植できるようになる • 画像、音声処理wikipedia や論文が活用でき るようになりますぞ 一部意訳があります正確性は他の文献を参考にしてね 4. アジェンダ ① 関数とは (2m) ② 三角関数とは (5m) ③ 三角関数を使ったコーディング体験(10m) ④ 行列とは (5m) ⑤ 行列を実装するコーディング体験 (10

    クリエイティブコーディングのための数学 JavaScript 入門 [三角関数と行列]
  • 算数の問題「円周率を3.14とするとき、半径11の円の面積を求めよ」の解を379.94とするのは誤り? - Togetterまとめ

    科学や教育にまつわる非常に面白い議論に発展したのでまとめました。いろいろな観点から考察がなされていて興味深いです。漏れているツイート等があれば適宜追加をお願いします。 ※なるべく多様な議論を収集するという方針のため量が膨大になっていますが,まとまりごとに区切り線を入れてあるので,適当に読み飛ばしながら興味のある箇所だけ拾っていくのもありですし,時間をかけてじっくり全部読むのも面白いと思います。 2/22 タグが荒らされたのでタグ編集を禁止しました。 3/3 だいぶ落ち着いてきたようなので,イタズラ防止も兼ねて「誰でも編集可」を解除しました。もし何か問題等があれば@kisopsy_kunまでご連絡ください。

    算数の問題「円周率を3.14とするとき、半径11の円の面積を求めよ」の解を379.94とするのは誤り? - Togetterまとめ
  • 日曜数学会に参加しました&「プログラミングのための線形代数」を読みました - 下町柚子黄昏記 by @yuzutas0

    先日、日曜数学会というイベントに招待いただき、LTをしてきました。趣味数学をやっているひと(=日曜数学者)が集まって、お酒を飲みながら研究を共有する会です。 他の参加者のスライド 二次形式と素数で遊ぼう レムニスケートのお話 図形の分割・合成パズルの話 どんな話をしてきたか 「線形代数という概念が存在しない退屈な世界」というタイトルで、前半は線形代数を再学習しようとした経緯を、後半は実際に勉強したときの話をしました。 基的な内容は「数学を避けてきた社会人プログラマが機械学習の勉強を始める際の最短経路」というQiita記事の劣化版で、ここに書いてあることを実践したら良かったよ!という共有になります。 再学習の経緯 WEBサービスを作っているとレコメンドやラベル分類といった機械学習をやりたくなります。 ちょっとした実装ならライブラリとサンプルコードに乗っかれば簡単にできます。 しかし、がっ

    日曜数学会に参加しました&「プログラミングのための線形代数」を読みました - 下町柚子黄昏記 by @yuzutas0
  • 【統計学】初めての「標準偏差」(統計学に挫折しないために) - Qiita

    統計をこれから学ぼうという方にとって、非常に重要な概念ですが理解が難しいものに「標準偏差」があると思います。「平均」くらいまでは馴染みもあるし、「わかるわかるー」という感じと思いますが、突如現れる「標準偏差」 の壁。結構、この辺りで、「数学無理だー」って打ちのめされた方もいるのではないでしょうか。 先にグラフのイメージを掲載すると、下記の赤い線の長さが「標準偏差」です。なぜこの長さが標準偏差なのか、ということも解き明かしていきます。 (code is here) 記事では数学が得意でない方にもわかるように1から標準偏差とはなにか、を説明してみようという記事です。 数式はわかるけど、イマイチ「標準偏差」の意味わからんという方にも直感的な理解がしてもらえるような説明もしていきますので、ぜひご覧ください。 (※ この記事では標準偏差の分母に $n$を使用しています。$n-1$を使用するケースも

    【統計学】初めての「標準偏差」(統計学に挫折しないために) - Qiita
  • CodeIQについてのお知らせ

    2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod

    CodeIQについてのお知らせ
  • これから群論を学ぶ方のための入門講座 – びりあるの研究ノート

    物理学や情報科学を学ぶ中で数学の一分野である「群論」の知識が必要となる場面が多々あります。 しかしながら群論は抽象数学の入門的な分野であり、抽象数学に慣れ親しんだ方でないとなかなか厳しい物があると思います。 実は群論を学ぶためには微積分や行列・線形代数といった高度な前提知識は全く必要なく、 中学生程度の数学の知識さえあれば理解できるはずなのですが、 基的な考え方が非常に抽象的ですので、 東大の情報科学科の学生であってもかなり苦労しているようです(筆者調べ)。 確かに群論を系統的に学ぼうとすると抽象的な概念が多く、躓くとこも多いと思いますが、 情報科学や暗号理論で必要な最低限の知識のみに絞れば、さほど難しくはありません。 また、必要な前提知識も先程述べたように中学生レベルの数学の知識のみですので、 文系の方でも十分理解していただける内容だと思います。 そこで記事では、これから群論を学ぼう

    これから群論を学ぶ方のための入門講座 – びりあるの研究ノート
    wushi
    wushi 2015/05/28
  • CodeIQについてのお知らせ

    2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod

    CodeIQについてのお知らせ
  • 文系がゼロから統計を勉強するときに最初の1年で読むべき本 - StatsBeginner: 初学者の統計学習ノート

    最初の1年で読むべきを考える 私の統計学の理解はまだまだ初歩レベルに留まっていますが、昨日飲んでる時に「初心者向けの統計のってどういうのが分かりやすいですか」というようなことを訊かれて、「俺に訊かれてもあまり参考には……」とか思う一方、まだ初歩レベルの位置にいる人間だからこそ言える「このが分かりやすかったよ論」ってのもあるよなと思ったので、現時点での読書感想みたいなものをメモしておきます。一昨年、統計の勉強を始めた頃の自分にむかって書いてる感じです。 理系の人とか、ある程度統計の理解ができている人からみれば、「質的な理解のためにはもっと難しいがいいよ」ってなるかも知れませんが、「いやそんな難しいの勧められても独学のモチベーションが続かねーよ」っていう立場でまとめておきますw ここでは、 統計の勉強はしたことがなく、標準偏差とか言われても意味分からない プログラミングも全くわからな

    文系がゼロから統計を勉強するときに最初の1年で読むべき本 - StatsBeginner: 初学者の統計学習ノート
    wushi
    wushi 2014/10/02
    心理的統計学ってなんぞ
  • 生態学データ解析 - 生態学会大会2007