タグ

DeepLearningに関するshokaiのブックマーク (11)

  • chainerでニューラルネットを学んでみるよ(chainerでニューラルネット2) - 人工言語処理入門

    前回の記事ではchainerのインストールからサンプルコードを使って画像識別問題を解くところまでやりました。 hi-king.hatenablog.com 今回の記事では回帰・分類問題用のシンプルなニューラルネットの作り方をやろうと思います。andとxorの論理式を学習させます。chainerでの実装の学習と、あとニューラルネットの教育目的に使いやすいなーと思ったので。2層のニューラルネットまで段階をふんで解説してるんですが、プログラム読むほうが得意、って方は一番最後のコードを先に読んだほうがわかりやすいかもしれません。 追記(7/13)型チェック chainer1.1.0から型チェックが入ったので(https://github.com/pfnet/chainer/pull/95)、識別にはfloat32を入力してint32を出力、回帰にはfloat32を入力してfloat32を出力、とい

    chainerでニューラルネットを学んでみるよ(chainerでニューラルネット2) - 人工言語処理入門
  • PFN発のディープラーニングフレームワークchainerで画像分類をするよ(chainerでニューラルネット1) - 人工言語処理入門

    1日ちょっと前に、PFNから新しいディープラーニングフレームワーク"chainer"が公開されました[1]。触ってみた感じの特徴は、pythonのコードで完結するので、システムに組込みしやすそうで、処理の内容も読みやすい。同時に、処理の内容に興味を持たずに使うには難しいという思いでした。ベースにしてあたらしいツールを作るには最適に感じるので、これから、chainerをベースにした様々な用途のツールができるのが期待されます。 CPU用インストール ~ MNISTのトレーニング ここでは、chainerのチュートリアル[1]に書いてあるとおりにインストールと初期タスクをおこなうだけです。 インストールは、githubからソースを落としてきてpython setup.py installでも、pipで入れてもいいと思います。とりあえずここではpip pip install chainer これで

    PFN発のディープラーニングフレームワークchainerで画像分類をするよ(chainerでニューラルネット1) - 人工言語処理入門
  • 長文日記

    長文日記
  • 分散深層強化学習でロボット制御 - Preferred Networks Research & Development

    新入社員の松元です。はじめまして。 “分散深層強化学習”の技術デモを作成し、公開いたしました。ロボットカーが0から動作を学習していきます! まずはこの動画を御覧ください。 以下で、動画の見どころと、使っている技術を紹介します。 動画の見どころ Car 0(○の付いている車)が右折カーブの手前で減速する様子(右画面の白いバーのところが、ブレーキのところで赤くなっている。ニューラルネットはブレーキが最も多く報酬が得られると推測していることがわかる)。速い速度ほど報酬は大きいが、カーブを曲がりきれず壁にぶつかってしまうので学習が進むとカーブ手前でのみ減速するようになる。 目の前に車がいるときは一時停止して、いなくなってから加速する。 エチオピアには当にこのような交差点があるらしい。 ぎりぎりですれ違う2台。学習途中ではすれ違いきれずにぶつかって倒れてしまうこともある(早送りシーン中に人が写って

    分散深層強化学習でロボット制御 - Preferred Networks Research & Development
  • National Data Science Bowl 10位 - デー

    プランクトン画像分類コンペこと National Data Science Bowl が終わりました。 Description - National Data Science Bowl | Kaggle 結果はタイトル通り10位(1049チーム中)でした。賞金2000万円が1円も貰えなかったショックで毎日15時間くらい寝ています。感想と投稿内容です。 感想 世界Deep Convolutional Neural Networks職人コンテストという感じでした。みんな強かったです。前半は、2〜5位くらいにいる状態だったので、これは賞金はオレのものだなHAHAHAなどと思っていたのですが、終盤は15位くらいまで押し出されるようになり、こいつらマジかよ、強すぎだろ、と思って、最後方向転換をしてどうにか10位で終われました。自分の感覚ではスコア(NLL)で0.7以下を出せれば、Deep CNNを熟

    National Data Science Bowl 10位 - デー
  • Deep Learningでラブライブ!キャラを識別する - christinaの備忘録

    このところDeep Learningが相当流行っているようで、ほとんど至るところで話題になっているのを見ます。 Deep Learningは深層学習とも呼ばれ、ニューラルネットワークの層をこれまでより深くして機械学習を行う技法です(だそうです)。 画像認識コンテストで他の方法と比べて非常に高い精度を示しており、以前は人の手で行っていた特徴の抽出まで行えます。 以前であれば車を認識するには車はどのような特徴を持っているかを人がモデル化して入力していたわけですが、この特徴を入力画像と与えられたラベルからニューラルネットワークが捉えてくれます。詳しいことはDeep Learningで検索して出てくる記事やスライドを参照のこと。 Deep Learning自体は容易に実装可能なものではなさそうですが、多くの研究グループがDeep Learningを行うためのソフトウェアをオープンソースにしているた

    Deep Learningでラブライブ!キャラを識別する - christinaの備忘録
  • ディープラーニングを使ったイメージの切り抜き | カメリオ開発者ブログ

    こんにちは、シバタアキラです。この度PyDataの家であるアメリカのコミュニティーで半年に一度開催されているPyDataカンファレンスに出席するため、NYCに行って来ました。11/22-11/23の二日間の日程で行われ、延べ250人ほどが参加したイベントです。その時の模様は、先日のPyData Tokyo第二回ミートアップでもご説明させていただき、また後日記事化されると思いますので、そちらをぜひご覧いただければと思います。 今回はそのPyData NYCカンファレンスで私が発表してきたミニプロジェクトについてお話します。最近各所で話題に上がるディープラーニングですが、これを使った応用を「カメリオ」のサービス向上のために使えないか、というのがそもそものプロジェクトの着想でした。今回PyData Tokyoオーガナイザーとして、またディープラーニングで色々と面白い実験をしている田中さん(@a

    ディープラーニングを使ったイメージの切り抜き | カメリオ開発者ブログ
  • Building a deeper understanding of images

    Philosophy We strive to create an environment conducive to many different types of research across many different time scales and levels of risk. Learn more about our Philosophy Learn more

    Building a deeper understanding of images
  • Caffe | Deep Learning Framework

    Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Why Caffe? Expressive architecture encourages application and innovat

  • ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term

    ねこと画像処理。 (みかん – 吉祥寺 きゃりこ) 前回の ねこと画像処理 part 2 – 検出 では画像内のの顔を検出する方法を紹介しましたが、今回はディープラーニングの技術を用いての品種を識別したいと思います。 学習データ ねこと画像処理 part 1 – 素材集めでは、自分で撮影した写真を学習データとして使うと書いたのですが、都内のカフェ等で出会えるに限ってしまうと品種の偏りが大きくなってしまうので、ここではしぶしぶ研究用のデータセットを使うことにします。。ただ、Shiba Inuがあるのに日が誇るMike Nekoが含まれていないのでデータセットとしての品質は悪いと思います。 The Oxford-IIIT-Pet dataset オックスフォード大学が公開している動物画像のデータセットです。その内画像は2400枚、クラス数は12で1クラスにつき200枚あります。今

    ねこと画像処理 part 3 – Deep Learningで猫の品種識別 – Rest Term
  • Recommending music on Spotify with deep learning

    This summer, I’m interning at Spotify in New York City, where I’m working on content-based music recommendation using convolutional neural networks. In this post, I’ll explain my approach and show some preliminary results. Overview This is going to be a long post, so here’s an overview of the different sections. If you want to skip ahead, just click the section title to go there. Collaborative fil

    Recommending music on Spotify with deep learning
  • 1