Skip to main content
The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application... more
    • by 
    •   5  
      MathematicsHistory of MathematicsPhilosophy Of MathematicsHistory of Continuity and Infinitesimals
Resumo: Neste artigo analisamos as críticas apresentadas por George Berkeley, em The analyst (1734), ao método das fluxões e à inconsistência intrínseca à noção de infinitésimo do cálculo diferencial e integral, introduzido por Isaac... more
    • by 
    •   13  
      Logic And Foundations Of MathematicsCalculusLogicHistory of Mathematics
Reality Through Fiction : Leibniz on the nature of infinitesimals Shinji IKEDA Focusing on the “fictionalistic” interpretations of infinitesimals, we study in this article Leibniz’s conception of the nature of infinitesimals. First, we... more
    • by 
    •   4  
      History of MathematicsPhilosophy Of MathematicsHistory of Continuity and InfinitesimalsGottfried Wilhelm Leibniz
    • by 
    •   5  
      Non Standard AnalysisHistory of MathematicsPhilosophy Of MathematicsHistory of Continuity and Infinitesimals
LEIBNIZ: THE INFINITE IN THE ORGANIC BODY Abstract: The organic body is conceived as a unit and can be thought as a corporeal substance. The relationship between soul and body is not just a pre-established harmony relationship between a... more
    • by 
    •   5  
      PhilosophyHistory of Continuity and InfinitesimalsThe BodyGottfried Wilhelm Leibniz
“O infinito! Nenhuma outra questão tem tocado tão profundamente o espírito do homem; nenhuma outra idéia tem estimulado de forma tão frutífera seu intelecto; no entanto, nenhum outro conceito permanece com tanta necessidade de... more
    • by 
    •   4  
      Non Standard AnalysisPhilosophy Of MathematicsHistory of Continuity and InfinitesimalsSurreal Numbers
At the turn of the seventeenth century, Bruno and Cavalieri independently developed two theories, central to which was the concept of the geometrical indivisible. The introduction of indivisibles had significant implications for... more
    • by 
    •   5  
      History of MathematicsHistory of Continuity and InfinitesimalsPythagoreanismGiordano Bruno
Resumen - abstract de la tesis doctoral defendida en 1996 en la Universidad de Valladolid (España) y dirigida por el Prof. D. Javier de Lorenzo
    • by 
    •   4  
      Non Standard AnalysisHistory of Continuity and InfinitesimalsHistory of calculusThe History of Calculus and its Conceptual Development
The aim of this article is to shed light on an understudied aspect of Giordano Bruno's intellectual biography, namely, his career as a mathematical practitioner. Early interpreters, especially, have criticized Bruno's mathematics for... more
    • by 
    •   5  
      History of MathematicsHistory of Continuity and InfinitesimalsEarly Modern Science and PhilosophyGiordano Bruno
The way Leibniz applied his philosophy to mathematics has been the subject of longstanding debates. A key piece of evidence is his letter to Masson on bodies. We offer an interpretation of this often misunderstood text, dealing with the... more
    • by 
    •   2  
      History of Continuity and InfinitesimalsGottfried Wilhelm Leibniz
The purpose of this monograph is to show that Aristotle's revolutionary ideas are pertinent and current even in the twenty-first century and have not yet been fully understood. We shall start by explaining the concept of phenomenon, as... more
    • by 
    •   3  
      Cosmology (Physics)History of Continuity and InfinitesimalsBaruch Spinoza
The book seeks to resolve the so-called ‘problem of mass nouns’ — a problem which cannot be resolved on the basis of a conventional system of logic. It is not, for instance, possible to explicate assertions of the existence of air, oil,... more
    • by 
    •   28  
      Set TheoryMetaphysicsOntologyLogic
Wiener in his mathematics and in his development of prosthetic devices often emphasized continuous processes, contrasting with Shannon's total emphasis on discrete bits .The connection between atomism and individualism since ancient... more
    • by 
    •   4  
      History of Continuity and InfinitesimalsHistory of AtomismNorbert WienerCommunalism
We review the theory of Fermat reals and Fermat extensions, a relatively new theory of nilpotent infinitesimals which does not need any background in Mathematical Logic. We focus on some differences from Nonstandard Analysis and Synthetic... more
    • by 
    •   2  
      History of Continuity and InfinitesimalsInfinitesimals
Одним из основателей современного понятия непрерывности является Рихард Юлиус Вильгельм Дедекинд. В статье проведён анализ определений непрерывности у Кантора и Дедекинда.
    • by 
    •   6  
      History of MathematicsHistory of Continuity and InfinitesimalsDedekindGeorg Cantor
Ce travail est une étude sur la méthode de Fermat pour le maximum et minimum. Fermat en parlait comme s' il s' agissait d'une méthode, mais il n'expliqua que quelques procédures. Nous reprenons les différentes procédures de Fermat et nous... more
    • by 
    •   4  
      Early Modern HistoryHistory of MathematicsHistory of AlgebraHistory of Continuity and Infinitesimals
Capítulo a aparecer en el libro "Leibniz en Español, homenaje a Alejandro Herrera" por Roberto Casales y Paniel Reyes-Cárdenas
    • by 
    •   6  
      History of Continuity and InfinitesimalsLeibnizGeorg CantorInfinite series
Leibniz described imaginary roots, negatives, and infinitesimals as useful fictions. But did he view such 'impossible' numbers as mathematical entities? Alice and Bob take on the labyrinth of the current Leibniz scholarship.
    • by  and +1
    •   2  
      History of Continuity and InfinitesimalsGottfried Wilhelm Leibniz
In this survey, a recent computational methodology paying a special attention to the separation of mathematical objects from numeral systems involved in their representation is described. It has been introduced with the intention to allow... more
    • by 
    •   19  
      Ordinary Differential EquationsPhilosophy of SciencePhilosophy Of MathematicsHistory of Continuity and Infinitesimals
Through Zeno of Elea, as a representant of an early ancient thinking, there is revealed the reception of zero in the ancient culture in the thesis. The main part is devoted to the conception of infinity, infinite division and nothingness... more
    • by 
    •   6  
      History of Continuity and InfinitesimalsInfinityZeno of EleaTheory of Relativity
Tretji del trilogije Mnogo hrupa se odmika od samega problema staroslovanskega svetišča in se dotakne širšega konteksta Ptuja v času od pozne antike do visokega srednjega veka. Rdeča nit članka je kontinuiteta, specifično pa se posveti... more
    • by 
    •   33  
      Late Antique and Byzantine HistoryLate Antique and Byzantine StudiesMedieval HistoryMedieval Studies
As Weyl was interested in infinitesimal analysis and for some years embraced Brouwer's intuitionism, which he continued to see as an ideal even after he had convinced himself that it is a practical necessity for science to go beyond... more
    • by 
    •   8  
      Intuitionistic LogicHistory of MathematicsPhilosophy Of MathematicsHistory of Continuity and Infinitesimals
In this paper I defend Aristotle on Finitism criticising in a new way the notion of instantaneous velocity so closely associated with the development of the calculus. Finitism, as it is here taken, is a cluster of views centring on the... more
    • by 
    •   4  
      History of Continuity and InfinitesimalsPhilosophical LogicPhilosophy of LogicThe History of Calculus and its Conceptual Development
Abstract: My aim is to consider one of the most pressing problems for multi-valued logic and second order vagueness, in the light of Peirce's theory of Synechism. I will begin with a presentation of two sets of principles that we... more
    • by 
    •   3  
      History of Continuity and InfinitesimalsVaguenessCharles S. Peirce
Final version of the book "Ryszard Kilvington - nieskończoność i geometria" (Richard Kilvington - infinity and geometry) before processing by Łódź University Press (minor, mostly technical changes). Analysis of Kilvington's account on the... more
    • by 
    •   7  
      History of Continuity and InfinitesimalsHistory of AtomismOxford PhilosophyHistory of Medieval Philosophy
Corso di Storia della Filosofia Moderna e Contemporanea (a. a. 2020/2021, titolare: Prof. Marco Matteoli) - Dipartimento di Civiltà e Forme del Sapere, Università di Pisa
    • by 
    •   18  
      Number TheoryLogicHistory of MathematicsHistory of Continuity and Infinitesimals
En este trabajo analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y... more
    • by 
    •   8  
      17th Century & Early Modern PhilosophyHistory of Continuity and InfinitesimalsGottfried Wilhelm LeibnizLeibniz (Philosophy)
ABSTRACT This is a proof to show that 0.9999... is not = 1 (where '...' means recurring)1. This is all that is necessary to refute the class of problems known generally as Zeno’s Paradox2. There are only two parts to this proof.... more
    • by 
    •   4  
      MathematicsHistory of Continuity and InfinitesimalsInfinityInfinitesimals
ABSTRACT: This paper studies the foundations of infinitesimal calculus in the work of José Mariano Vallejo (1779-1846), the most influential mathematician in Spanish during the first half of the 19th century. For this purpose, the... more
    • by 
    •   2  
      History of MathematicsHistory of Continuity and Infinitesimals
this article is the third part from my book: “the invisible world of infinitesimals” Lambert Academic Publishing “...For physics there is a definite distinction between finiteness and infinity; whereas the mathematician speaks of the... more
    • by 
    • History of Continuity and Infinitesimals
The semi-critical edition of Richard Kilvington's question "Utrum continuum sit divisibile in infinitum" from his commentary on "De generatione" based on six preserved manuscript copies of the text.
    • by 
    •   7  
      Medieval PhilosophyHistory of Continuity and InfinitesimalsAristotelianismOxford Philosophy
L’ipotesi esposta in questo libro è che le radici dell’ontologia dinamica che si delinea negli ultimi dialoghi di Platone, culminante nella definizione dell’essere come dynamis nel Sofista, sono da rintracciare nel dibattito matematico... more
    • by 
    •   8  
      MetaphysicsOntologyPlatoHistory of Continuity and Infinitesimals
Na justificação do método de cálculo infinitesimal desenvolvido por Leibniz, o princípio de continuidade desempenha um papel fundamental. Com efeito, seria sob a chancela deste princípio que Leibniz se permitiria tratar a tangente a uma... more
    • by 
    •   4  
      History of Continuity and InfinitesimalsGottfried Wilhelm LeibnizLeibniz (Philosophy)Leibniz
    • by 
    •   8  
      History of Continuity and InfinitesimalsEmmanuel KantImmanuel KantNovalis
LEIBNIZ: THE DIVINE INFINITUDE AND THE INFINITE IN US abstract: The true infinite, accord to Leibniz’s New Essays, is not a quantity, it is prior to any composition and is not formed by adding parts. The infinite, for Leibniz, is actual... more
    • by 
    •   4  
      PhilosophyHistory of Continuity and InfinitesimalsGottfried Wilhelm LeibnizLabyrinth
In the course of his philosophic career, Charles Peirce made repeated attempts to construct mathematical definitions of the commonsense or experimental notion of'continuity'. In what I will label his Final Definition of Continuity,... more
    • by 
    •   9  
      SemioticsPhilosophyPragmatismPhilosophy Of Religion
Числовая прямая – абстрактное понятие, сформировавшееся в начале XX века, её следует отличать от телесной прямой и геометрической прямой. Телесная прямая, или отрезок – образ, возникший в античности. Геометрическая прямая, или ось, как... more
    • by 
    •   3  
      History of MathematicsHistory of Continuity and Infinitesimalsистория математического анализа
    • by 
    •   21  
      American LiteraturePolitical SociologyComparative LiteraturePolitical Philosophy
Many important concepts of the calculus are difficult to grasp, and they may appear epistemologically unjustified. For example, how does a real function appear in “small” neighborhoods of its points? How does it appear at infinity?... more
    • by 
    •   16  
      Cognitive ScienceMathematicsCalculusComputer Science
A well-known drawback of algorithms based on Taylor series formulae is that the explicit calculation of higher order derivatives formally is an over-elaborate task. To avoid the analytical computation of the successive derivatives,... more
    • by 
    •   16  
      MathematicsOrdinary Differential EquationsComputer ScienceAlgorithms
A well-known drawback of algorithms based on Taylor series formulae is that the explicit calculation of higher order derivatives formally is an over-elaborate task. To avoid the analytical computation of the successive derivatives,... more
    • by  and +2
    •   12  
      Ordinary Differential EquationsAlgorithmsHistory of Continuity and InfinitesimalsNumerical Analysis
История теоремы Ролля началась в XVII в. с решения алгебраического уравнения методом каскадов и формулирования понятия корневого интервала. В XIX в. Б. Больцано сформулировал на их основе понятие и теорему о непрерывной функции. Эволюция... more
    • by 
    •   2  
      History of MathematicsHistory of Continuity and Infinitesimals
Many important concepts of the calculus are difficult to grasp, and they may appear epistemologically unjustified. For example, how does a real function appear in "small" neighborhoods of its points?
    • by  and +1
    •   11  
      Cognitive ScienceMathematicsCalculusEpistemology
    • by 
    •   21  
      MathematicsOntologyEpistemologyMedieval Philosophy
"In that semantic tradition of which Frege and Russell are among the most distinguished members, the project of formalizing natural-language sentences is not simply a matter of developing smooth and effective techniques for the... more
    • by 
    •   20  
      Set TheoryPhilosophyMetaphysicsOntology
A finales del siglo XVII existe un intercambio de cartas entre Leibniz y Johann Bernoulli en el que tratan la posible existencia de una referencia para los infinitesimales. Ambos tratan de justificar el cálculo desde posiciones... more
    • by 
    •   4  
      History of Continuity and InfinitesimalsGottfried Wilhelm LeibnizHistory of calculusThe History of Calculus and its Conceptual Development
A comienzos del siglo XVIII se origina una polémica en la Academia de Ciencias de París a propósito de la fundamentación del cálculo initesimal. Con motivo de la misma Leibniz presentará los infinitesimales como ficciones útiles...... more
    • by 
    •   4  
      History of Continuity and InfinitesimalsGottfried Wilhelm LeibnizHistory of calculusThe History of Calculus and its Conceptual Development
Architectural choreography by logical codes. It shows the correlation between mathematical abstraction and body-language.
    • by 
    •   5  
      History of Continuity and InfinitesimalsPhenomenology of the bodyArchitectural TheoryParametric Design (Architecture)
    • by 
    •   3  
      History of Continuity and InfinitesimalsShakespearean DramaHamlet
In the years following Bertrand Russell's visit in China, fragments from Russell's work on mathematical logic and the foundations of mathematics started to enter the Chinese intellectual world. While up until 1925 Chinese intellectuals... more
    • by 
    •   5  
      History of Continuity and InfinitesimalsHistory of LogicModern Chinese HistoryBertrand Russell