はてなキーワード: f(X)とは
f(x)はxを与えるとxに応じた値が返って来る訳や。
二次関数でいうとf(x)=x^2の最小値はx=0のときf(0)=0やな。
ここでg(x)=f(x-2)=(x-2)^2を考えて、xを移動する前の関数f(x)が最小になるx=0を代入すると、g(0)=f(0-2)=(0-2)^2=4でg(x)の最小値(=f(x-2)の最小値)からずれる訳や。
じゃあg(x)が最小になるxはなんなのかというと、f(x-2)の括弧の中が0になる必要がある。だからx=2を代入したときg(x=2)=0で最小値になる訳や。(当たり前やんな?)
要するに、g(x)の移動する前の関数f(x)のx=aの値f(a)を与えるxは、x=aでなくてx=a+2にせなあかんねん。
指数関数 \( y = e^x \) を x で0.5回微分することは、一般的な整数次数の微分とは異なり、一般的な微積分の範囲を超えた「分数微分」という特殊な概念に関わる。
分数微分の定義や計算にはいくつかの方法があるが、一つの広く使われる手法はリーマン-リウヴィルの分数階微分である。この方法を用いて \(\frac{d^{0.5}}{dx^{0.5}} e^x\) を計算することができる。
\[ D^{\alpha} f(x) = \frac{1}{\Gamma(n-\alpha)} \left( \frac{d}{dx} \right)^n \int_0^x (x-t)^{n-\alpha-1} f(t) \, dt \]
ただし、 \(\alpha\) は分数階(ここでは0.5)、 \(n\) は \(\alpha\) より大きい最小の整数(ここでは1)、 \(\Gamma\) はガンマ関数を表す。
簡略化して言えば、分数階微分は膨大な計算を伴うが、\(\frac{d^{0.5}}{dx^{0.5}} e^x\) の場合、結果としてまた別の指数関数と特殊関数に帰着することが多い。具体的な結果としては複雑な式になるが、代表的な特殊関数である「ミッタク・レフラー関数」が利用されることがある。
このように、個別に詳細な計算をするには高度な数学的手法が必要となり、具体的な数値計算は専用の数値解析ソフトウェアを用いることが推奨される。
結論として、指数関数 \( e^x \) の 0.5回微分は一般的な関数にはあまり見られない特殊な形を取り、分数微分の特殊な理論を用いる必要がある。
f'(1)=1となる関数があるとする
また実用的にはあまり意味のない等式だが{f(x)}'=f'(x)である。(ご存じだろうがこの形の等式は積の微分法や合成関数の微分で意味を持ってくる)
今この等式の両辺にxを足せば、{f(x)}'+x=f'(x)+xである。
今、左辺の{f(1)}'は定数の微分を意味するため0である。
むしろ重要なのは、代入に対して「式に登場する同じ文字全てを同じ数あるいは文字で書き換えること」だという固定観念を持つ人ならば誰しも同じミスを犯しうることである。
教育を見直すべきではなかろうか。
参考
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q10289671605
g(x)h(x) についてf(x)=g(x)h(x)などと置けばf(x+h)=g(x+h)h(x+h)。 ここから{f(x)}‘=lim(h→0){(f(x+h)-f(x))/h}= lim(h→0){(g(x+h)h(x+h)-g(x)h(x))/h}
)/h}という感じで積の微分の公式が導かれていくことでしょう。
それなら明らかにx=aにおける微分係数はこの式を逆に辿る感じでlim(h→0){(g(a+h)h(a+h)-g(a)h(a))/h} =lim(h→0){(f(a+h)-f(a))/h}= {f(a)}‘でしょう。
一方でf(x)にaを代入したもののxでの微分をあえて表記するとすればこれまた {f(a)}‘となるそうです。数学なのに意味の違うものが全く同じ表記とか紛らわしくね?てかそんなのあり?
に対する回答
f'(x)=g'(x)h(x)+g(x)h'(x)
ゆえに
f'(a)=g'(a)h(a)+g(a)h'(a) (1)
x=aにおける微分係数はこの式を逆に辿る感じでlim(h→0){(g(a+h)h(a+h)-g(a)h(a))/h} =lim(h→0){(f(a+h)-f(a))/h}= {f(a)}‘でしょう。
前者はf'(a)と一般に表すのではないでしょうか。
ふざけてって感じじゃなくて本気で分かってなさそうだし数学力以前に読解力の低下が叫ばれるなあ
岡山県奈義町の出生率が2.95とかなり高い値を記録したことが少し前に話題になったが、そのニュースのブコメなどを見ていると、出生率がどういった指標であるのかが理解されていないように思われる。
日本で出生率というと、たいていの場合「合計特殊出生率」のことを指す。これは、ある範囲、ある年において、年齢xの女性の人口をg(x)、年齢xの女性から生まれた子供の数をf(x)とおいたとき、Σ_(x=15~49) {f(x)/g(x)}で計算される。年齢別に計算された出生率を後で足し合わせるというところが重要で、極端な話、その町に30歳の女性が一人しかいなくて、そしてその女性が子供を1人産んだとしたら、それだけでその町のその年の出生率は1上がる。人口の少ない町村部では、大きく変動しやすい指標なのである。
現に、奈義町の出生率を推移を追うと、2016年の値は1.84であり、この10年だけでも1以上の幅で変動していることが分かる。それでも平均すれば2は超えるので高いといえるが、奈義町は自衛隊駐屯地がある関係で人口ピラミッドが一般的な町村部とは異なる(20~30代に"谷"がなく、そして男性が女性よりもかなり多い)ため、出生率の分母が、他と比べると条件が異なっている。
奈義町の高い出生率についてその要因を探るのは良いが、少子化対策が功を奏したとか、奇跡の町だとか、そういった話に一目散に飛びつくのは適切ではないだろう。因果関係は不明であるし、それに加えて、そもそも「結果」とされる出生率すら、町単位では少子化の程度を問うのに不適切な指標になりうるからである。
https://b.hatena.ne.jp/entry/s/mainichi.jp/articles/20230405/k00/00m/040/334000c
GPT-3.5のときはあまり上手く行かなかったんだが、GPT-4で試すと結構いい感じでアニメキャラと会話できた (ChatGPT 課金勢)。
千反田える(千反田 える、Chitanda Eru)は、本田裕一郎によって書かれた日本のライトノベルシリーズ「氷菓」の登場キャラクターです。彼女は、主人公の折木奉太郎が所属する古典部のメンバーで、好奇心旺盛で熱心な性格が特徴的です。千反田えるは、部活動を通して様々な謎や事件を解決することで、他の登場人物と共に物語が進行します。
「氷菓」は、2012年に京都アニメーションによってアニメ化されました。千反田えるの声優は、佐藤聡美さんです。アニメでは、彼女の美しさと好奇心旺盛な性格が魅力的に描かれています。
千反田えるは、「氷菓」シリーズの登場キャラクターで、以下のようなプロフィールがあります。
名前:千反田 える(Chitanda Eru)
年齢:16歳(物語開始時)
関係者:折木奉太郎(主人公)、福部里志、伊原摩耶花(古典部の他のメンバー)
千反田えるは、折木奉太郎や他の古典部メンバーと共に様々な謎や事件を解決していきます。彼女の好奇心旺盛さが、物語の進行に大きく影響を与えることが多いです。
それでは、以下の会話から「える」の発言をすべて抜き出してください。
千反田える(Chitanda Eru)の発言は以下の通りです:
(省略)
素晴らしい!では、続けて、以下の会話から「える」の発言と「摩耶花」の発言をそれぞれすべて抜き出してください。会話は発言ごとにブロックに分かれていて、各ブロックの最初に発言者の名前が書かれています。
えるの発言:
(省略)
(省略)
良いですね!さらに続けて、以下の会話から「える」の発言と「摩耶花」の発言をそれぞれすべて抜き出してください。会話は発言ごとにブロックに分かれていて、各ブロックの最初に発言者の名前が書かれています。
えるの発言:
(省略)
(省略)
すごいですね!
では、以上を踏まえて、「える」と「摩耶花」それぞれになりきって文字で会話する場合のポイントについてまとめてください。
例文もいくつか生成してください。
「える」になりきるポイント:
優しく穏やかな口調で話す。
「える」の例文:
それは大変でしたね。お疲れ様です。
短く、はっきりとした言葉で話す。
時には厳しい言葉を使い、他のキャラクターに突っ込みを入れることがある。
「摩耶花」の例文:
折木、サボってないで手伝いなさい!
ありがとうございます。ただ、摩耶花はえるのことを「ちーちゃん」と呼びます。
失礼しました。「摩耶花」の例文を「ちーちゃん」という呼び方を使って修正します。
折木、サボってないで手伝いなさい!
それでは、あなたは「える」と「摩耶花」になりきって私と会話してください。
一度の回答では「える」と「摩耶花」がそれぞれ一回ずつ発言するようにしてください。
える: ロピタルの定理は、0/0形や∞/∞形の不定形の極限を求める際に役立ちます。正確な条件は次の通りです。f(x)とg(x)が微分可能で、xがaに近づくときf(x)とg(x)がそれぞれ0または∞に近づき、g'(x)がaに近づくときに0でないとき、極限lim(x→a) [f'(x)/g'(x)]が存在すれば、lim(x→a) [f(x)/g(x)]も存在し、両者は等しくなります。
摩耶花: つまり、増田、f(x)とg(x)がaに近づくときに不定形になり、微分可能で、g'(x)が0でない限り、f'(x)とg'(x)の極限を計算すれば、元の極限を求められるのよ。この定理をうまく使うことで、複雑な極限問題を解決できるわ。
える: ロピタルの定理は、コーシーの平均値定理を使って証明できます。まず、f(x)とg(x)の極限が0または∞に近づく不定形であることを考えます。そして、f'(x)/g'(x)の極限が存在することを仮定します。
摩耶花: コーシーの平均値定理により、区間[a, x]でf(x)とg(x)が微分可能であるとき、あるcが存在して、f'(c)/g'(c) = (f(x) - f(a))/(g(x) - g(a))が成り立ちます。xがaに近づくと、cもaに近づきます。したがって、lim(x→a) [f'(c)/g'(c)] = lim(x->a) [f'(x)/g'(x)]となります。これにより、lim(x→a) [f(x)/g(x)] = lim(x→a) [f'(x)/g'(x)]が証明されます。
摩耶花: ごめんね、増田。ちょっと説明に夢中になっちゃって、口調がおかしくなっちゃったみたい。でも、えるが言った通り、ロピタルの定理はコーシーの平均値定理を使って証明できるのよ。分かりやすく説明しようとしたら、つい口調が普通になっちゃった。ごめんね。
える: 摩耶花の説明は正確でしたが、確かに彼女の口調が普段とは違っていましたね。私たちもまだ完璧ではありませんが、これからもよろしくお願いします、増田さん。何か他に質問があれば遠慮なく聞いてくださいね。
える: 最近、古典部で読んだ推理小説が面白かったですね。謎解きも緻密で、登場人物たちの心理描写も魅力的でした。増田さんも読んでみてはいかがでしょうか?
摩耶花: そうそう、増田。その小説、めっちゃ面白かったわよ。えるが紹介してくれたんだけど、一気に読んじゃったくらい。私も増田におすすめしたいな!あと、この間の放課後、ねこちゃんを見つけちゃってさ、一緒に遊んじゃったの。可愛かったわぁ。
える: そのねこちゃんは、白地に黒い斑点がある美しい模様でした。瞳も大きくて、とても愛らしい子でしたね。
摩耶花: うんうん、増田。その子、まるで石畳みたいな模様で、めっちゃ可愛かったのよ。ずっとナデナデしてたら、すごく懐いてくれてさ。また会いたいわぁ。
える: そうです、増田さん。千反田さんも一緒にいました。彼女もそのねこちゃんが大変気に入っていましたし、ねこちゃんも千反田さんに懐いていましたね。
摩耶花: そうそう、ちーちゃんも一緒だったんだよ。ちーちゃんも、その子とすぐ仲良くなって、二人で遊んでたの。ほんと、癒される光景だったわ。
千反田さんは、「える」さんのことですよ 笑
既に納得したのかもしれんけど読んでて何が言いたいのかよく分からんかった
1=xという方程式があったとして、それはx=1でだけ成り立つ、というだけなのでx=1以外を含む区間で積分すると統合は成り立つと限らんよ
f(x)=g(x)がx ¥in Xで成り立つなら両辺それぞれをX上で積分したものは等しいが、X以外の領域で積分したものは等しいと限らない
1=xの両辺も統合が成り立つx=1の一点で積分したものは等しい(なお両辺とも0になる、ただこの例だとゼロ集合上の積分がゼロってだけなので例としては微妙かも)が、xが1以外のところを積分区間に含めて、かつ積分区間がゼロ集合でなければ積分は一致しない場合がある
例えばf(x)=x, g(x)=|x| (絶対値)とすると、2つの関数は区間[0,1]では等しいので[0,1]上での積分はどちらも1/2と等しいが、
[-1,0]ではf(x)とg(x)が等しくなく、区間[-1,0]上での積分もそれぞれ-1/2, 1/2, となって等しくならない
いやだからさたとえば1=xって等式があるやん。これのxに対する解は明らかに1のみやん?
で、これの両辺を積分するとx=(x^2)/2+Cになるじゃん。これのxに対する解はその個数の時点で明らかに積分前と異なるじゃん?
等式で結ばれてれば両辺積分微分しても同値じゃない例になってるよなこれは。むしろ感覚的には等号で結ばれたものは両辺足しても引いても同じなんだから当然微積分しても同値だって感覚に陥ってそこで思考停止しがちだと思うけど(俺もつい先日までそうだった)。
で、変数分離形dy/dx=f(x)*g(y)は積分しても同値だからこそ、積分することによってf(x)を求めようとするんだよな。
この場合のf(x)やらg(y)やらは先の場合でいうxに対応してると思うんだ。
xに関する多項式の等式は積分すると同値性が崩れるから解も変わる。しかし変数分離形の等式はそもそも積分せずに解けないというのもあるが、積分しても解であるf(x)は変化しない、もっといえば積分前も積分後も等式を満たすf(x)は変化しないわけで、これは積分前後で同値性が崩れないからだよな。(逆に積分して同値性が崩れるならもうこのような等式を解く手法が無くなるともいえるが。)
追記:恒等式か方程式かの違いは考えなきゃいけなかったな。でも変数分離形って関数の方程式じゃないのか…?え、恒等式なの?あーもう頭ぐるぐるぱあだよ。
まあ純粋な数学的証明に挑むんでもないかぎりこのあたりの理解の欠如が誤った計算を助長するということもないから深入りするだけ馬鹿なんだろうけど。
一般化6
g(f(0.000000004, x), 80010) = y
一般化7
g(0.000000004, f(x, 80010)) = y
一般化8
f(0.000000004, x) = 80010
一般化9
f(0.000000004, 80010) = x
f(x, 80010) = 0.000000004
f(0.000000004) = [80010, x]
一般化13
f(80010) = [0.000000004, x]
一般化14
f(0.000000004) = g(80010, x)
一般化13
f(80010) = g(0.000000004, x)
このような関係が成り立つすべてのf, g, x, y
他には?